Pose Estimation of Novel Rigid Objects Van Nguyen Nguyen

Jury:

Markus Vincze (Prof, TU Wien) - reviewer

Benjamin Busam (Researcher, TU Munich) - reviewer

Josef Sivic (Prof, CTU Prague) - examiner

Dima Damen (Prof, University of Bristol & Google Deepmind) - examiner

Slobodan Ilic (Researcher, TU Munich & Siemens) - examiner

Vincent Lepetit (Prof, ENPC) - supervisor

PhD defense 19th December 2024

Object pose estimation

Image courtesy of BOP challenges

2

Object pose estimation

Image courtesy of BOP challenges

3

Object pose estimation

Image courtesy of BOP challenges

Applications of object pose estimation

Robotics: bin picking, grasping, robot navigation (Demo from Pickit)

Combining Edge and Texture Information for Real-Time Accurate 3D Camera Tracking, Vacchetti et al., ISMAR 2004

Augmented reality (Vacchetti *et al.*, ISMAR 2004)

Seen object pose estimation

Seen object pose estimation

Novel object pose estimation

Novel = not seen during the training

Novel object pose estimation

Novel = not seen during the training

or

Reference image

9

• Cluttered background and occlusions

Credit: LM, T-LESS datasets

• Viewpoints and illumination

Credit: TUD-L dataset

• Textureless objects

Credit: YCB-V, T-LESS datasets

Generalization to novel objects, domain gap

Synthetic training images generated by BlenderProc

Credit: MegaPose, BOP challenge datasets

Real-world images

Early work

3D Object Recognition, David G. Lowe, 1987

Input RGB

Wire-frame model

Prediction

Related work: seen object pose estimation (-2021)

...

Template matching

- Learning descriptors [Wohlhart, CVPR 2015]
- Pose guided learning [Balntas, ICCV 2017]

...

- Implicit 3D learning [Sundermeyer, ECCV 2018]
- MultiPath learning [Sundermeyer, CVPR 2020]

...

Correspondence-based

- BB8 [Rad, ICCV 2017]
- Heatmaps [Oberweger, ECCV 2018]
- PVNet [Peng, CVPR 2019]
- DPOD [Zakharov, ICCV 2019]
- Pix2Pose [Park, ICCV 2019]
- EPOS [Hodan, CVPR 2020]
- Single-stage [Hu, CVPR 2020]

Direct pose estimation

- SS6D [Kehl, ICCV 2017]
- Real-Time Seamless [Tekin, CVPR 2018]
- DeepIM [Li, ECCV 2018]
- PosefromShape [Xiao, BMVC 2019]
- I Like to Move It [Busam, arXiv, 2020]
- CosyPose [Labbé, ECCV 2020]
- GDR-Net [Wang, CVPR 2021]

Main contributions of this thesis

[CVPR'24] GigaPose: Fast and Robust Novel **Object Pose Estimation via One Correspondence**

Prediction

from a Single Image

Reference

[CVPR'22] Templates for 3D Object Pose Estimation Revisited: Generalization to New **Objects and Robustness to Occlusions**

Query

Prediction

Predicted pose distribution

Other contributions

First-author contributions

PIZZA [3DV'2022 Oral], GoTrack [In submission]: 6DoF pose tracking methods for novel objects

MaGIC-GS [In submission]: Monocular Articulated GenerIC object reconstruction with Gaussian Splatting

BOP challenge 2024 [ECCVW 2024]: Model-based, model-free detection, pose estimation of novel objects

OpenStreetView-5M [CVPR'24]: The Many Roads to Global Visual Geolocation

Co-author contributions

RGB-Video

Outline

Query

Prediction

Reference

[CVPR'22] Templates for 3D Object Pose **Estimation Revisited**: Generalization to New **Objects and Robustness to Occlusions**

Query

Prediction

[CVPR'24] NOPE: Novel Object Pose Estimation

2

Templates for object pose estimation

Visual learning and recognition of 3D objects, Murase and Nayar, IJCV 1995

Robot and turntable to capture templates

Templates captured under different viewpoints

Templates for object pose estimation

- Generalization to novel objects: Templates generalize to novel objects, by extending the set of templates;
- Robustness to domain gap and illumination: by discriminative learning;
- Robustness to clutter and partial occlusions: image intensity correlation is very sensitive to partial occlusions, solved by representing with local feature vectors;
- **Robustness to the lack of texture:** in contrast with approaches based on local descriptors such as interest points, templates capture the appearance of an object as a whole.

Query

GT

Prediction

Similarity

Outline

[ICCVW'23] CNOS: A Strong Baseline for CAD based Novel Object Segmentation

Input RGB

Prediction

Query

[CVPR'24] GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence

Predicted 2D-2D correspondences

Prediction

from a Single Image

Reference

[CVPR'22] Templates for 3D Object Pose Estimation Revisited: Generalization to New **Objects and Robustness to Occlusions**

Prediction

Query

Prediction

Predicted pose distribution

Motivation

RGB

2D detection/segmentation

6D pose

*supervised = test objects are seen during the training

*unsupervised = test objects are not seen during the training

Onboarding stage

Rendering templates from CAD models

Templates rendered with Pyrender

Nearest templates generated with BlenderProc provided by BOP challenges

Onboarding stage

• Extracting visual descriptors ("cls" token of DINOv2) of templates

Templates

Reference descriptors

Proposal stage

• Extract all 2D masks from (Fast)SAM

Proposal descriptors

Matching stage

• Finding object ID, confidence score for each proposal

Results

(Frame by frame prediction)

Evaluation protocol

- Training datasets: not required (CNOS is training-free)
- Testing datasets: 7 datasets of BOP-Classic-Core
- Evaluation metrics: COCO evaluation protocol (AP with IoU thresholds in [0.5, ..., 0.95])

LM-O

T-LESS

HB

YCB-V

IC-BIN

ITODD

TUD-L

Results

- Accuracy: CNOS improves SOTA by absolute 19.8% AP, outperforms the supervised Mask R-CNN;
- **Run-time:** CNOS (FastSAM) outperforms CNOS (SAM) by absolute 0.8% AP while being 7x faster;
- **Domain gap:** BlenderProc reduces the domain gap, with 4.3% AP improvement compared to Pyrender.

Input 3D models

Input RGB

Prediction (confidence > 0.5)

Outline

[CVPR'22] Templates for 3D Object Pose **Estimation Revisited**: Generalization to New **Objects and Robustness to Occlusions**

Query

[CVPR'24] GigaPose: Fast and Robust Novel **Object Pose Estimation via One Correspondence**

Query

Predicted 2D-2D correspondences

Prediction

from a Single Image

Reference

Prediction

Query

Prediction

Template matching for 3D pose estimation

• "Good" image representation for pose estimation: Object discrimination and pose discrimination

Learning Descriptors for Object Recognition and 3D Pose Estimation, Wolhart and Lepetit, CVPR 2015

Global representation vs local representation

Global representation (1D vector)

Local representation (3D tensor)

Failure cases of global representation

Training objects

Object discrimination (t-SNE visualization)

Learning Descriptors for Object Recognition and 3D Pose Estimation, Wolhart and Lepetit, CVPR 2015

Testing (unseen) objects

Pose discrimination

Failure cases of global representation

Training objects

Object discrimination

-> Fail on unseen objects in presence of cluttered background

Pose Guided RGB D Feature Learning for 3D Object Pose Estimation, Balntas et al., ICCV 2017

Testing (unseen) objects

Pose discrimination

-> No pose information in descriptors

Our approach: Using local representation & template mask

[1] Learning Descriptors for Object Recognition and 3D Pose Estimation, Wohlhart and Lepetit, CVPR 2015 [2] Pose Guided RGB D Feature Learning for 3D Object Pose Estimation, Balntas et al., ICCV 2017

Training samples: positive pairs vs negative pairs

Training: contrastive loss InfoNCE

Before training

Representation learning with contrastive predictive coding, Aäron van den Oord et al., arXiV 2018

After training

Robustness to occlusions

Template 1 Template 2 Template 3

$$ar{\mathbf{q}}, ar{\mathbf{t}}) = rac{1}{|\mathcal{M}|} \sum_{l} \mathcal{M}^{(l)} \mathcal{S}\left(\overline{\mathbf{q}}^{(l)}, \overline{\mathbf{t}}^{(l)}
ight)$$
 $ar{\mathbf{q}}, ar{\mathbf{t}}) = rac{1}{|\mathcal{M}|} \sum_{l} \mathcal{M}^{(l)} \mathcal{O}^{(l)} \mathcal{S}\left(\overline{\mathbf{q}}^{(l)}, ar{\mathbf{t}}^{(l)}
ight)$
 $\mathcal{O}^{(l)} = 1_{\mathcal{S}(\overline{\mathbf{q}}^{(l)}, ar{\mathbf{t}}^{(l)}) > \delta}$

1

Robustness to occlusions

Template 1 Template 2 Template 3

$$\begin{split} \bar{\mathbf{q}}, \bar{\mathbf{t}}) &= \frac{1}{|\mathcal{M}|} \sum_{l} \mathcal{M}^{(l)} \mathcal{S}\left(\overline{\mathbf{q}}^{(l)}, \overline{\mathbf{t}}^{(l)}\right) \\ \bar{\mathbf{q}}, \bar{\mathbf{t}}) &= \frac{1}{|\mathcal{M}|} \sum_{l} \mathcal{M}^{(l)} \mathcal{O}^{(l)} \mathcal{S}\left(\overline{\mathbf{q}}^{(l)}, \overline{\mathbf{t}}^{(l)}\right) \\ \mathcal{O}^{(l)} &= 1_{\mathcal{S}(\overline{\mathbf{q}}^{(l)}, \overline{\mathbf{t}}^{(l)}) > \delta \end{split}$$

1

Inference on novel objects

Templates


```
Query
```


Qualitative results

[1] Pose Guided RGB D Feature Learning for 3D Object Pose Estimation, Balntas et al., ICCV 2017

Evaluation protocol

- LINEMOD and LINEMOD-Occlusion:
 - Cross-validation style (i.e #1 for testing, #2 #3 for training)
 - Metric: Accuracy (object ID, angle difference <=15 degrees) \bigcirc

LINEMOD

- T-LESS:
 - Training on objects 1-18, testing on objects 19-30 Ο
 - Metric: Average Recall with VSD \bigcirc

T-LESS

Learning Descriptors for Object Recognition and 3D Pose Estimation, Wolhart and Lepetit, CVPR 2015 MultiPath Learning for Object Pose Estimation Across Domains, Sundermeyer et al., CVPR 2020

Results

Our method significantly outperforms SOTA on both T-LESS, and LINEMOD(-Occlusion).

Quantitative results on LM and LM-O

[1] Learning Descriptors for Object Recognition and 3D Pose Estimation, Wohlhart and Lepetit, CVPR 2015 [2] Pose Guided RGB D Feature Learning for 3D Object Pose Estimation, Balntas et al., ICCV 2017 [3] Implicit 3D Orientation Learning for 6D Object Detection from RGB Images, Sundermeyer et al., ECCV 2018 [4] Multi-path Learning for Object Pose Estimation Across Domains, Sundermeyer et al., CVPR 2019

Quantitative results on T-LESS

Summary

- Failure cases of global representation: cluttered background, pose discrimination;
- **Generalization**: ours is the first object pose method showing generalization on LINEMOD (same time as OSOP [1]);
- **Efficiency**: our method achieves 93.5% accuracy on unseen objects by training only on 7-8 reference objects.

OSOP: A Multi-Stage One Shot Object Pose Estimation Framework, Shugurov et al., CVPR 2022

Quantitative results on novel objects

Outline

[CVPR'24] GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence

Query

Predicted 2D-2D correspondences

Prediction

from a Single Image

Reference

[CVPR'22] Templates for 3D Object Pose **Estimation Revisited**: Generalization to New **Objects and Robustness to Occlusions**

Prediction

Query

Prediction

Motivation

• CNOS detection/segmentation is noisy

• SOTA render-and-compare method MegaPose is slow

. . .

MegaPose 6D Pose Estimation of Novel Objects via Render & Compare, Labbé et al., CoRL 2022

Score + $\triangle P$

Our approach: 6DoF from one 2D-to-2D correspondence

Segmentation Nearest template

2D-to-2D correspondences

Our approach: 6DoF from one 2D-to-2D correspondence

We predict 2 missing DoFs (in-plane, scaling) for each 2D-to-2D correspondence.

-> Reducing the number of templates required at inference.

Alignment

Prediction

Training samples: 2D-to-2D correspondences

Template Query

Template

Query

Template Query

Training losses: contrastive InfoNCE & regression

- Onboarding: rendering 162 templates from CAD model & extracting local features
- Processing: cropping input image and extract local features
- Retrieval: nearest templates and a set of 2D-to-2D correspondences
- Pose fitting: predicting 2D scale, in-plane rotation for each correspondence & RANSAC

Affine transform $\mathbf{M}_{t
ightarrow a}$

Qualitative results

Segmentation

Nearest template

2D-to-2D correspondences Alignment Prediction

Qualitative results

Segmentation

Nearest template

2D-to-2D correspondences Alignment Prediction

Evaluation protocol

GigaPose

3

- Training datasets: 2M BlenderProc images of MegaPose-GSO, MegaPose-ShapeNet
- Testing datasets: 7 datasets of BOP-Classic-Core •
- Evaluation metrics: BOP evaluation protocol (MSSD, MSPD, VSD) •
- Input detections: CNOS

YCB-V

Synthetic images generated by BlenderProc (MegaPose-GSO & MegaPose-ShapeNet)

T-LESS

HB

ITODD

IC-BIN

TUD-L

Results

GigaPose outperforms MegaPose in all settings while being **35x faster** for coarse pose stage.

Quantitative results on seven core datasets of BOP challenge

[1] MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare, Labbé et al., CoRL 2022 [3] GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects, Moon et al., arXiv 2024

Results

- Evaluating robustness to segmentation errors:
 - X axis: IoU between the input masks vs GT masks
 - Y axis: performance at different IoU thresholds

[1] ZS6D: Zero-Shot 6D Object Pose Estimation Using Vision Transformers, arXiv, 2023
[2] MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare, Labbé et al., CoRL 2022
[3] GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects, Moon et al., arXiv 2024

Results using a single reference image

Reconstruction from a single image by Wonder3D [1]

[1] Wonder3D: Single image to 3d using cross-domain diffusion, Long et al., ICLR 2024

lethod	Detection	Single image		GT 3D model
		Coarse	Refined	w/o refinement
legaPose	GT 3D model	16.3	25.6	22.9
igaPose (ours)	GT 3D model	19.5	29.1	29.9
legaPose	Single image	15.4	25.2	22.7
igaPose (ours)	Single image	18.5	28.2	29.8

Table 2. Results with predicted 3D models on LM-O dataset

Summary

- Accuracy & run-time: 2.5% AR improvement while 35x faster for coarse pose stage;
- Robustness to segmentation errors: GigaPose's performance is stable across input noisy masks;
- Number of templates: Requiring only 162 templates, depicting only out-of-plane rotation (3x) less than MegaPose)
- Pose estimation from a single image: GigaPose + MegaPose + single image > MegaPose + GT model

Reconstruction & segmentation

MegaPose

Ours

10 cm

Conclusion

Training (hours/days)

Onboarding (sec/min)

Task 1: Model-based 6D localization of novel objects: Template-Pose, GigaPose, NOPE

Task 2: Model-based 2D detection of novel objects: CNOS

Task 3: Model-based 2D segmentation of novel objects: CNOS

Inference (online)

Open-source contributions on Github / HuggingFace

• All projects are open-source on Github:

★216	1 24	nv-nguyen/cnos	★153
★ 187	1 1	nv-nguyen/nope	★ 74
★ 179	1 3	nv-nguyen/template-pose	★ 35

BOP challenges:

 \downarrow >10K / month

★417 ● 141

thodan/bop_toolkit

Object pose paper summary:

★725 **1** 88 YoungXIAO13/ObjectPoseEstimationSummary

Number of stars, forks, downloads counted on 9th December 2024

- nv-nguyen/gigaPose 14
- 3 nv-nguyen/pizza
- 3 nv-nguyen/bop_viz_kit

huggingface.co/datasets/bop-benchmark/datasets

Future work: model-free novel object pose estimation

Replacing 3D model of test objects by a reference video (introduced in BOP challenge 2024)

Images captured by iPhone

3D reconstruction by SuGaR [1]

Future work: articulated object pose estimation

• Extension to articulated object pose estimation

Examples of articulated objects

3D reconstruction + annotated joint

Thank you !!!

BOP **Benchmark Object Pose Big Organized Party**

