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Abstract
Object pose estimation is an important computer vision problem as it has great
impact in many applications such as robotics, augmented reality, and autonomous
driving. While existing supervised object pose estimation methods have achieved
remarkable performance, they heavily rely on extensive training data specific to each
target object, and cannot generalize to novel objects. In this thesis, we address this
problem of generalization, and propose scalable methods for detecting, segmenting,
and estimating the 6D pose of novel objects in RGB images. Our methods require
only the 3D model or a single reference image of test objects for inference, making
them suitable for practical scenarios in real-world applications.

Our methods are grounded on the concept of “templates”, which are 2D views of
target 3D objects. The idea of using templates for object pose estimation is not new:
the first work on this seems to be Murase’s and Nayar’s in 1995. We nevertheless show
that, thanks to recent advances in machine learning, in particular on unsupervised
image features, templates can have very interesting properties to generalize to unseen
objects efficiently: They do not require training while adapting to new objects; they
can be matched extremely fast; they can be robust to occlusions thanks to high
dimensional local image features.

Our first method is CNOS, a simple yet powerful method for segmenting novel
objects in RGB images from their 3D models. CNOS generates segmentation propos-
als from the input image using Segment Anything and matching them with templates
rendered from the 3D models and represented with the foundation features of DI-
NOv2. CNOS significantly outperforms existing methods on multiple datasets and
has been awarded as the best method for 2D detection/segmentation of unseen object
in the BOP challenge 2023. CNOS is also used as the default detection method for
both model-based, model-free unseen object pose estimation at the BOP challenge
2024.

We then reconsider in details existing template matching methods for pose esti-
mation and analyse their limitations when dealing with novel objects. We introduce
a new approach that matches the input testing image with templates from their
3D models. Our approach is trained on a limited number of reference objects with
contrast learning and generalizes well to novel objects.

We further extend this work in a method we call GigaPose, a novel approach that
is significantly faster and more robust against input segmentation errors. GigaPose
samples templates only on two degrees of freedom (DoFs) for estimating out-of-plane
rotation, then uses feature matching to estimate the remaining four DoFs. GigaPose
seamlessly integrates with existing refinement methods. It achieves state-of-the-art
results for RGB-based methods on the standard BOP benchmark while is 35 times
faster comparing to existing methods for the coarse pose estimation stage.

Finally, we present NOPE, a simple method to estimate novel object pose from a
single reference image. Our approach takes a single image of a new object as input
and predicts the relative pose of this object in new images without prior knowledge
of the object’s 3D model. We achieve this by training a model to directly predict
discriminative embeddings that resemble templates for viewpoints surrounding the
object. This prediction is done using a simple U-Net architecture with attention and
conditioned on the desired pose, which yields extremely fast inference. We compare
our approach to state-of-the-art methods and show it outperforms them both in terms
of accuracy and robustness on both synthetic and real-world datasets.
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Résumé

L’estimation de pose d’objets est un problème important en vision par ordinateur,
car elle a un grand impact sur de nombreuses applications telles que la robotique,
la réalité augmentée et la conduite autonome. Bien que les méthodes existantes
d’estimation de pose d’objets supervisées aient atteint des performances remar-
quables, elles dépendent beaucoup de données d’entraı̂nement spécifiques à chaque
objet et ne peuvent pas généraliser à de nouveaux objets qui n’ont pas été vus pen-
dant l’entraı̂nement. Dans cette thèse, nous abordons ce problème de généralisation
et proposons des nouvelles méthodes pour détecter, segmenter et estimer la pose
6D pour des nouveaux objets dans des images RGB. Nos méthodes n’utilisent que
le modèle 3D ou une seule image de référence des objets de test pour l’inférence,
permettant des scénarios pratiques dans des applications réelles.

Nos méthodes sont basées sur le concept de “templates”, qui sont des vues 2D
d’objets 3D. L’idée d’utiliser des templates pour l’estimation de la pose d’objets n’est
pas nouvelle : le premier travail à ce sujet est celui de Murase et Nayar en 1995.
Cependant, nous montrons que, grâce aux récents progrès en apprentissage automa-
tique, en particulier sur les caractéristiques d’images non supervisées, les templates
peuvent avoir des propriétés très intéressantes pour se généraliser efficacement à des
objets jamais vus auparavant : ils ne nécessitent pas d’entraı̂nement pour s’adapter à
de nouveaux objets ; ils peuvent être appariés extrêmement rapidement ; ils peuvent
être robustes aux occultations grâce à des caractéristiques locales d’image.

Les principales contributions de cette thèse sont les suivantes. Premièrement, nous
introduisons CNOS, une méthode simple mais efficace pour segmenter de nouveaux
objets dans des images RGB à partir de leurs modèles 3D. Notre méthode génère
des hypothèses de segmentation à partir de l’image d’entrée en utilisant Segment
Anything et les compare avec des “templates”, ici des images rendues des modèles
3D en utilisant les caractéristiques DINOv2. CNOS surpasse de manière significative
les méthodes existantes sur plusieurs jeux de données et a été récompensée comme
la meilleure méthode pour la détection/segmentation 2D d’objets inconnus dans le
BOP Challenge 2023. CNOS est aussi utilisée comme la méthode de détection par
défaut pour le BOP challenge 2024.

Deuxièmement, nous revisitons les méthodes de correspondance de templates
existantes et démontrons leurs limites lorsqu’il s’agit de nouveaux objets. Nous
introduisons ensuite une nouvelle approche qui associe l’image de test d’entrée avec
des templates de leurs modèles 3D. Notre approche est entraı̂née sur un petit nombre
d’objet de référence avec un apprentissage par contraste et se généralise bien à de
nouveaux objets.

Troisièmement, nous introduisons GigaPose, une nouvelle approche qui est signi-
ficativement plus rapide et plus robuste contre les erreurs de segmentation en entrée.
GigaPose échantillonne des templates uniquement sur deux degrés de liberté (DoFs)
pour estimer la rotation hors-plan, puis utilise la correspondance de caractéristiques
pour estimer les quatre DoFs restants. GigaPose peut s’intégrer parfaitement avec
les méthodes de raffinement existantes et atteindre des résultats à la pointe de la
technologie sur les jeux de données standards BOP tout en étant 35 fois plus rapide
que les méthodes existantes dans la phase d’estimation de pose grossière.

Quatrièmement, nous présentons NOPE, une méthode simple pour estimer la
pose d’objet nouveaux à partir d’une seule image de référence. Notre méthode prend
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une seule image d’un nouvel objet comme entrée et prédit la pose relative de cet
objet dans de nouvelles images sans connaissance préalable du modèle 3D de l’objet.
Nous y parvenons en entraı̂nant un modèle à prédire directement des embeddings
discriminatifs pour des points de vue entourant l’objet. Cette prédiction est effectuée
en utilisant une architecture U-Net simple avec attention et conditionnée par la
pose souhaitée, ce qui permet une inférence extrêmement rapide. Nous comparons
notre approche aux méthodes éxistant et montrons qu’elle les surpasse en termes de
précision et de robustesse sur des jeux de données synthétiques et réels.
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Chapter 1

Introduction

1.1 Problem statement

The goal of this thesis is to develop methods for detecting, segmenting, and estimating
the pose of novel rigid objects in RGB images without retraining. The pose of a rigid
object is defined by 6 degrees of freedom (DoFs), composed by a 3D rotation and a
3D translation relative to a reference coordinate frame, located, e.g., at the camera.
Because of these 6 DoFs, the object pose is also called “6D object pose" in the literature.

Existing supervised methods on 6D object pose estimation [81, 115, 77, 130, 78,
157, 108, 58, 71, 141] have shown impressive performance; however, they heavily rely
on large amounts of annotated training data of target objects. Introducing new objects
unseen during training requires a significant effort to synthesize or annotate data and
retrain the model, thereby limiting their practicality in industrial applications. For
instance, in a logistics warehouse, it may be impractical to retrain the pose estimation
method for every new product.

To address this issue, category-level pose estimation methods [143, 21, 76, 89]
have been proposed, which can handle unseen instances from the same categories as
those in the training data. Nonetheless, these methods still struggle with completely
unknown object categories. Another potential solution is to train keypoint-based
approaches to estimate generic keypoints for all objects from different categories [165].
However, these methods require well-defined keypoints on 3D models, which are
generally sensitive to object appearances and shape variations.

In this thesis, we aim to address this problem of generalization by developing
scalable methods that can handle previously-unseen objects, thus saving both training
and data capture time. We define three stages for our methods:

• Training stage: The method is provided a set of RGB-D training images showing
annotated objects with ground-truth 6D poses and 3D CAD models. The images
can be captured in real-world environments or synthetically generated using
softwares such as BlenderProc [26]. This stage typically takes several hours or
days.

• Onboarding stage: The method is then provided a 3D CAD model or a refer-
ence image of test objects that were not seen during training. For this stage, the
method can spend few minutes on a single GPU, e.g., up to 5 minutes in BOP
challenge [51]. The time is measured from the point right after the raw data
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Figure 1.1: Overview of the settings considered in this thesis. During the training
stage, we assume that the methods do not have any prior information about the target
objects. Given a CAD model or a single reference image of test objects for a very
short “onboarding stage” within few minutes, our goal is to segment the object, or
estimate its 6D pose, or track its 6D motion during the inference.

(CAD models or reference images) is loaded to the point when the method is
ready to run the inference.

• Inference stage: The method receives a real-world RGB image unseen during
training and outputs a 6D pose.

We consider several practical testing scenarios where objects and their categories
are not seen during training, only a 3D CAD model or a reference image is available
at the onboarding and inference stages as shown in Figure 1.1.

1.2 Applications

Object pose estimation has great impact in many applications such as robotics,
augmented reality, and autonomous driving. We discuss each of these applications
in details below.

• Robotics: Two main downstream applications of object pose estimation in
robotics are object grasping and navigation, as shown in Figure 1.2a. For
instances, in warehouses, or assembly systems, the robot needs to detect objects
and estimates their objects in order to grasp them. Similarly, the robot needs to
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localize all objects in the 3D scene to have a representation of the environment,
and avoid obstacles when navigating.

• Augmented reality (AR): AR enables us to seamlessly integrate virtual objects
into the real world, commonly represented by images. To achieve this, synthetic
elements must be accurately rendered and aligned with the real-world images,
where object pose estimation plays an important role. We show in Figure 1.2b
an example of an AR application using FoundationPose [147].

• Autonomous driving: A self-driving car benefits from advances in 3D object
pose estimation since it requires accurate object detection and pose estimation
for a vehicle to navigate in the 3D space without human assistance. We show
an example of 3D object detection using Cube R-CNN [10] in Figure 1.2c.

1.3 Challenges

While detecting, segmenting, and estimating 6D poses of novel rigid objects is im-
portant, well-motivated problem, there are, however, several challenges that need to
be addressed:

• Generalization to novel objects: The scalability of object pose estimation
methods is an important factor for most industrial applications. However,
learning-based approaches, commonly used in the industry, have a significant
limitation: they cannot generalize to new objects that are not seen during
training. Handling novel objects is not only the main goal but also the main
challenge in this thesis.

• Robustness to domain gap: Capturing real images of training objects un-
der different lighting, illumination conditions and annotating them with 6D
object poses requires considerable human effort. To address this issue, we
use a similar practical approach used in object pose estimation for known
objects–synthesizing the training data using rendering engines, such as Blender-
Proc [26]. In particular, we use the synthetic images by rendering large-scale
CAD model databases, such as ShapeNet [16] or Google Object Scan [28]. Be-
ing able to adapt from synthetic to real-world data is thus also important in
this task. We show in Figure 1.3a examples of synthetic training images and
real-world testing images.

• Robustness to clutter and partial occlusions: Object pose estimation methods
often fail in cluttered environments and when objects partially occluded by
other objects. This is because the irrelevant information from the background
or from other objects can confuse the method. We show an examples of this
challenge in Figure 1.3b.

• Robustness to viewpoint and illumination changes: Changes in the viewpoint
and illumination conditions can significantly affect the appearance of objects.
Developing algorithms that are robust to these variations is important for
consistent performance across different environments. We show an example of
this challenge in Figure 1.3c.
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(a) (b)

(a) Examples of robotics applications: (a) grasping objects in warehouses [32], (b)
robot navigation systems [42].

(b) Example of AR applications: Given an input image sequence, we can replace a
book (bottom right) with an AR wooden labyrinth game [147].

(c) Example of applications in autonomous driving: Given an input RGB image,
we can use Cube R-CNN [10], a 3D object detection method to detect the cars in the
streets and their 3D pose.

Figure 1.2: Examples of object pose estimation applications in (a) robotics, (b)
augmented reality (AR), and (c) autonomous driving.
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(i) (ii)

(a) Challenges of generalization to novel object and domain gap. We show (i) syn-
thetic training images generated using CAD models from ShapeNet [16] or Google
Object Scan [28] datasets, generated by BlenderProc [26], (ii) real-world testing im-
ages from popular datasets Linemod [46] and T-LESS [54]. This figure shows both
synthetic-real domain gap and challenge of generalization on novel objects.

(i) (ii)

(b) Challenges of cluttered background and occlusions: (i) cluttered environment
in Linemod [46], (ii) heavy occlusions for testing objects highlighted in red circle in
T-LESS [54].

(c) Challenges of illumination and viewpoints. We show four different images of
the same object under different illumination conditions from TUD-L dataset [55].

(i) (ii)
(d) Challenges of textureless objects. We show examples of (i) textured objects
in YCB-V [150] and HOPE [134] datasets, (ii) textureless objects in T-LESS [54] and
ITODD [30] datasets.

Figure 1.3: Challenges of object pose estimation for novel objects: (a) generalization
to unseen objects and domain gap, (b) cluttered background and occlusions, (c)
illumination and viewpoints, and (d) textureless objects.
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• Robustness to the lack of texture: Common objects without discriminative
textures can be found in households, offices, and industrial environments. How-
ever, these objects pose challenges for methods that rely on 2D local features
because feature detectors often struggle to detect reliable descriptors on these
objects. We compare textured objects and textureless objects in Figure 1.3d.

1.4 In defense of templates for object pose estimation

When aiming to solve the challenges raised by pose estimation of novel objects as
detailed above, we discovered that “templates”, which are 2D views of target 3D
objects are a very useful concept.

The idea of using templates for object pose estimation is not new: Murase and
Nayar in 1995 [99] relied on templates coded in the form of small grayscale images.
However, templates are often seen as slow and not robust to partial occlusions. This
is in fact now a misconception thanks to the advance of hardware and of machine
learning. They do provide a strong answer to the challenges raised in Section 1.3:

Generalization to novel objects. Templates allow to naturally generalize to novel
objects, by extending the set of templates. By using discriminative learning, we can
represent templates with discriminative image features. Matching input images to
templates can be seen as a Nearest Neighbor classifier, which is a very strong classifi-
cation method when the number of prototypes is large enough. Moreover, computing
the templates is in practice extremely fast, as it is only a matter of rendering views,
computing their image features, and storing them.

Templates can thus also be seen as “short term memory”, in the sense introduced
by LeCun in his “Path Towards Autonomous Machine Intelligence” [156]. Templates
allow to very quickly learn novel objects by storing them. However, the number
of templates grows linearly with the number of objects, and simply storing these
templates could become intractable at some point. In a complete system, one could
imagine training a deep network, which scales better with the number of objects,
once time is available for training.

Robustness to domain gap. To generate the templates, we use standard rendering
techniques in the case of our CNOS and GigaPose methods, and image prediction by
a deep network in the case of our NOPE method. In practice, the input images differ
to some extend with the generated templates, because of illumination differences and
the domain gap between real and synthetic images. These differences could interfere
with the matching of the templates.

Instead of representing templates as regular images as in [99], we represent
them as image features computed with a composition of unsupervised learning and
discriminative learning. Unsupervised learning gives us robustness to domain gaps.
Discriminative learning improves the accuracy of the matching.

Robustness to clutter and partial occlusions. Robustness to clutter is obtained
thanks to discriminative learning.

More complicated to achieve is robustness to partial occlusions. It is well known
that image intensity correlation is very sensitive to partial occlusions. We represent
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Query GT Prediction Similarity Query GT Prediction Similarity

Figure 1.4: Robustness against occlusions of template matching approaches for
object pose estimation. We show examples on Occlusion-LINEMOD without occlu-
sion (left) and with occlusion (right). The results demonstrate that using local feature
vectors minimizes the impact of partial occlusion on the evaluation of similarity be-
tween a template and an image when applying our template matching method [104]
as discussed in Section 1.4.

Figure 1.5: Challenges of object pose estimation for novel objects: (a) generalization
to unseen objects and domain gap, (b) cluttered background and occlusions, (c)
illumination and viewpoints, and (d) textureless objects.

however templates and input images not with intensities but with relatively large
local feature vectors. Similarity between a template and an input image is thus
computing as the sum of the dot products between high dimensional vectors. If such
a vector is corrupted, because of a partial occlusion for example, the dot product
tends to be close to 0: Two random vectors tend to be orthogonal to each other. Thus,
a partial occlusion does not penalize much the evaluation of similarity between a
template and an image.

Robustness to the lack of texture. One of the initial motivations for using templates
in object pose estimation is that templates capture the appearance of an object as a
whole. This contrasts with approaches based on local features such as interest points.
As such, templates work better than these approaches on untextured objects.

It should also be noted that computing the similarity between an input image
and the templates is very fast, as it can be done in batches. This contrasts with
much slower approaches such as RelPose [158], which need to apply a deep network
multiple times—once for each discretized pose.

1.5 Thesis outline

This thesis is organized as follows:

• Chapter 2. We review existing methods for 6D object pose estimation and
related tasks for both seen and unseen objects.
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• Chapter 3. We present CNOS, a method that can segment novel objects in
RGB images from only their CAD models. This method can then be used to
discard the rest of the image and to provide an input 2D bounding box to
the methods introduced afterwards in the thesis. CNOS has been awarded as
the best method for 2D detection/segmentation of unseen object in the BOP
challenge 2023. CNOS is also used as the default detection method for BOP
challenge 2024.

• Chapter 4. We revisit templates for object pose estimation and introduce a novel
method that can generalize to novel objects and robust to occlusions.

• Chapter 5. We further extend the work presented in Chapter 4 with GigaPose.
GigaPose combines templates and 2D-to-2D correspondences to significantly
improve the pose accuracy while reducing the required number of templates
and being 35× faster comparing to existing methods in coarse pose estimation
stage.

• Chapter 6. Finally, we present NOPE, a novel method we developed for esti-
mating 6D pose of novel objects from a single reference RGB image instead of a
complete 3D model. NOPE is able to provide a distribution over the 3D rotation
space rather than a single pose as this task is inherently ambiguous.

• Chapter 7. We conclude the thesis and suggests topics for future work.

1.6 Contributions

This thesis covers the following peer-reviewed accepted publications (ordered by
years):

[104] Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann, Vincent Lep-
etit. Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects
and Robustness to Occlusions. Computer Vision and Pattern Recognition (CVPR),
2022.

Abstract: We present a method that can recognize new objects and estimate
their 3D pose in RGB images even under partial occlusions. Our method
requires neither a training phase on these objects nor real images depicting
them, only their CAD models. It relies on a small set of training objects to
learn local object representations, which allow us to locally match the input
image to a set of “templates”, rendered images of the CAD models for the
new objects. In contrast with the state-of-the-art methods, the new objects on
which our method is applied can be very different from the training objects.
As a result, we are the first to show generalization without retraining on the
Linemod and Linemod-Occluded datasets. Our analysis of the failure modes
of previous template-based approaches further confirms the benefits of local
features for template matching. We outperform the state-of-the-art template
matching methods on the Linemod, Linemod-Occluded and T-LESS datasets.

[102] Van Nguyen Nguyen, Thibault Groueix, Georgy Ponimatkin, Vincent Lepetit,
Tomas Hodan. CNOS: A Strong Baseline for CAD-based Novel Object Segmentation.
International Conference on Computer Vision Workshops (ICCVW), 2023.
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Abstract: We propose a simple yet powerful method to segment novel objects
in RGB images from their CAD models. Leveraging recent foundation models,
Segment Anything and DINOv2, we generate segmentation proposals in the
input image and match them against object templates that are pre-rendered
using the CAD models. The matching is realized by comparing DINOv2 cls
tokens of the proposed regions and the templates. The output of the method is
a set of segmentation masks associated with per-object confidences defined by
the matching scores. We experimentally demonstrate that the proposed method
achieves state-of-the-art results in CAD-based novel object segmentation on
the seven core datasets of the BOP challenge, surpassing the recent method of
Chen et al. [17] by absolute 19.8% AP.

[103] Van Nguyen Nguyen, Thibault Groueix, Mathieu Salzmann, Vincent Lepetit.
GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence.
Computer Vision and Pattern Recognition (CVPR), 2024.

Abstract: We present GigaPose, a fast, robust, and accurate method for CAD-
based novel object pose estimation in RGB images. GigaPose first leverages
discriminative “templates”, rendered images of the CAD models, to recover the
out-of-plane rotation and then uses patch correspondences to estimate the four
remaining parameters. Our approach samples templates in only a two degrees
of freedom space instead of the usual three and matches the input image to
the templates using fast nearest neighbor search in feature space, results in a
speedup factor of 35× compared to the state of the art. Moreover, GigaPose is
significantly more robust to segmentation errors. Our extensive evaluation on
the seven core datasets of the BOP challenge demonstrates that it achieves state-
of-the-art accuracy and can be seamlessly integrated with existing refinement
methods. Additionally, we show the potential of GigaPose with 3D models
predicted by recent work on 3D reconstruction from a single image, relaxing
the need for CAD models and making 6D pose object estimation much more
convenient.

[101] Van Nguyen Nguyen, Thibault Groueix, Georgy Ponimatkin, Yinlin Hu, Re-
naud Marlet, Mathieu Salzmann, Vincent Lepetit. NOPE: Novel Object Pose Esti-
mation from a Single Image. Computer Vision and Pattern Recognition (CVPR),
2024.

Abstract: The practicality of 3D object pose estimation remains limited for many
applications due to the need for prior knowledge of a 3D model and a training
period for new objects. To address this limitation, we propose an approach
that takes a single image of a new object as input and predicts the relative
pose of this object in new images without prior knowledge of the object’s 3D
model and without requiring training time for new objects and categories. We
achieve this by training a model to directly predict discriminative embeddings
for viewpoints surrounding the object. This prediction is done using a simple
U-Net architecture with attention and conditioned on the desired pose, which
yields extremely fast inference. We compare our approach to state-of-the-
art methods and show it outperforms them both in terms of accuracy and
robustness.

All the software, pre-trained models and datasets developed during this thesis are
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available at https://www.github.com/nv-nguyen under open-source licenses.
Besides, other publications are not explicitly discussed in the thesis:

[100] Van Nguyen Nguyen, Yuming Du, Yang Xiao, Michaël Ramamonjisoa, Vincent
Lepetit. PIZZA: A Powerful Image-only Zero-Shot Zero-CAD Approach to 6DoF
Tracking. International Conference on 3D Vision (3DV), 2022 (Oral).

[1] Arslan Artykov, Antoine Guedon, Clementin Boittiaux, Van Nguyen Nguyen,
Vincent Lepetit. MAGIC-GS: Monocular Articulated Generic Object Reconstruction
with Gaussian Splatting. In submission, 2024

[2] Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronssohn,
Nacim Bouia, Stephanie Fu, Romain Loiseau, Van Nguyen Nguyen, Charles
Raude, Elliot Vincent, Lintao XU, Hongyu Zhou, Loic Landrieu. Open Street
View - 5M: The Many Roads to Global Visual Geolocation. Computer Vision and
Pattern Recognition (CVPR), 2024.

[51] Tomas Hodan, Martin Sundermeyer, Yann Labbe, Van Nguyen Nguyen, Gu
Wang, Eric Brachmann, Bertram Drost, Vincent Lepetit, Castern Rother, Jiri
Matas. BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of
Unseen Rigid Objects. Computer Vision and Pattern Recognition Workshops
(CVPRW), 2024.

Besides the publications mentioned above, I have actively contributed to the
research community as the main co-organizer of the BOP Challenge 2024 1, which
captures the state of the art in 6D object pose estimation. I also actively maintain the
evaluation methodology BOP Toolkit 2 and the BOP datasets on HuggingFace 3.

1https://bop.felk.cvut.cz/challenges/bop-challenge-2024/
2https://github.com/thodan/bop_toolkit
3https://huggingface.co/datasets/bop-benchmark/datasets
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Chapter 2

Related Work

This chapter provides an overview of methods for the detection, segmentation, pose
estimation, and novel view synthesis of rigid objects, including those applied to both
seen and novel objects. Pose estimation of rigid objects from images is one of the
oldest problems in computer vision, with a long history in the field, dating back to
Roberts’ work in 1963 [118], and the advent of Deep Learning marked a turning point
in the history of 3D pose estimation from images [74].

We therefore divide our review into four main sections. First, we briefly discuss
classical methods that do not rely on Deep Learning in Section 2.1. We then review
recent learning-based methods on pose estimation and related tasks for seen objects
in Section 2.2. Finally, we review methods applied for novel objects, including CAD-
based methods in Section 2.3, and CAD-free methods, which relax the requirement
of CAD models in Section 2.4.

2.1 Classical methods

This section discusses traditional, non-learning-based methods for object pose esti-
mation. It is structured around the image representations used by these methods.
These representations often depends on the types of test objects and scenes these
methods consider.

3D wire-frame model Input image Image edges Prediction

Figure 2.1: In [86], David G. Lowe represents the input image as a set of edges.
These edges are matched with the contours of the 3D wireframe object model to
detect the objects and recover their 6D poses. Figure from [86]. See 2.1.1

2.1.1 Edge-based features

In the early work [118], Roberts assumes that objects can be constructed as known
simple 3D wireframe models, composed of primitives representing edges on the
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objects. These primitives are detected in images by analyzing intensity gradients, for
example, using Sobel filters, which are invariant over different viewpoints.

Given these detected primitives, we can define a set of matches between the
input image and 3D wireframe model, then use a RANSAC-like strategy [86] to
recover the initial object pose. Specially, for each match, an initial object pose is
computed, we then measure the errors between the projection of the 3D model and
the location of detected primitives. By searching over the set of possible matches, we
find the optimal initial pose estimate. The pose is then further refined using Newton-
based optimization with all matches. We illustrate these approaches with [86] in
Figure 2.1. Similar edge-based methods [86, 4, 11, 60] were proposed to improve the
performance.

Object 1 Model 1 Object 2 Model 2 Input image Estimated poses

Figure 2.2: Ponce et al. [111] represent an object using small, registered patches
in 3D space. This representation is automatically generated from a limited set of
unordered training images. The 3D registration enables estimating the 6D object
pose by matching model patches with those detected in the input image. Figure
from [111]. See Section 2.1.2.

2.1.2 2D features

Edges are invariant to different viewpoints, they however discard the rich information
in image brightness, color pattern of testing objects in the input image. 2D feature
methods address this problem by modeling objects as sets of 3D patches associated
with a local image descriptor as well as the position of the 3D patch within the object’s
coordinate system. These descriptors are invariant under geometric and photometric
changes.

At test time, given a new image of the object, local invariant regions are detected in
the image, are then matched against the 2D features registered previously. Finally, the
6D object poses are estimated from the established 2D-3D correspondences, typically
using a PnP-RANSAC algorithm [36, 75]. This approach can be used with other types
of local features, such as SIFT [87], MSER [92], and SURF [6]. We show in Figure 2.2
an example of this approach with [111].

2.1.3 3D features

If depth measurements are available, 2D features methods can be extended to 3D
feature methods to detect and describe repeatable and distinctive local features on
3D surfaces. These method assume that the 3D object mesh models are available.
First, these methods extract features from the 3D models and organize them into a
database. Then, these methods match them against same features extracted from the
input point cloud calculated from the depth image and camera intrinsics. Examples of
3D local features are SHOT [122], KPQ [94], ISS [162], and MeshDoG [135] while the
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Figure 2.3: Pose estimation using Point Pair Features (PPF) [31, 23, 22]. The results
show accurately align 3D models with the input point clouds calculated from depth
image. Figure from [52]. See Section 2.1.3

most popular approach is Point Pair Features (PPF) [31]. PPF builds upon the concept
of surflet pairs [139] by matching oriented point pairs between a test scene’s point
cloud and an object model [31] as shown in Figure 2.3. Several similar works [68, 29,
7, 47, 137, 23, 22] were introduced to improve the performance.

Figure 2.4: Pose estimation using image templates [99]. An instrumented setup
composed of a robot and a turntable (a) is used to capture image templates of an
object under different viewpoints. Figure from [99]. See Section 2.1.4.

2.1.4 Template matching

Some methods compare prototype image representations, known as templates,
against corresponding regions of the input image. The templates depict an object
under various conditions, including different viewpoints and illumination settings,
and are obtained by capturing the object in a controlled environment as shown in
Figure 3.3. Additionally, the templates are automatically annotated with 6D object
poses.

When a template is detected, its associated 6D pose can be used as the estimated
pose, which can then be further refined. This approach requires a large number of
templates and has been addressed in several works [99, 13, 66].

Template matching methods are still sensitive to a cluttered background and
partial object occlusions as demonstrated in [99, 73]. We will further discuss and
address these limitations later in this thesis.

25



2.2 Pose estimation for seen objects

With the advent of Deep Learning, most 6D object pose estimation and tracking meth-
ods have shifted towards relying on image features learned by neural networks [74].
In this section, we first review methods on instance detection, segmentation used in
pose estimation (Section 2.2.1). We then discuss supervised pose estimation methods
including template matching methods (Section 2.2.1), correspondence-based methods
(Section 2.2.3), and direct pose estimation methods (Section 2.2.4).

2.2.1 Instance detection and segmentation

Performing object pose estimation typically involves two main steps: (1) detecting and
segmenting target objects in the input image, and (2) estimating their 6D object poses
from detected regions. While most methods focus on the second step, developing a
method for the first step is also important as 2D detection/segmentation is generally
an easier problem than 6D pose estimation, and it allows us to focus only on a specific
region in the input image, significantly reducing the computation cost and run-time.

Since Mask-RCNN [44], used in CosyPose [71], showed promising performance
in 2019 for instance segmentation of seven core-datasets of BOP challenge [56],
most state-of-the-art pose estimation methods based on these two steps have been
developed, and the problem of 2D detection/segmentation had been omitted by
using Mask R-CNN [44] or GDRNPP [141]. To reduce computational costs, some
popular methods focus only on 2D detection, such as FCOS [132], used in PFA [57]
and YOLOX [39], used in GDRNPP [141]. Similar to pose estimation methods, while
these supervised detection/segmentation methods have achieved impressive results,
they rely heavily on large training datasets and require several hours or days to train
for each target object.

We will further discuss and propose a novel method to address the problem of
generalization later in the thesis.

2.2.2 Template matching

One of the first methods that exploits the power of Deep Learning for object pose
estimation method is the template-matching approach proposed by Wolhart and
Lepetit [148]. In their method, a convolutional neural network (CNN) is used to
project the input image into a learned discriminative representation space. The CNN
is trained using a triplet loss that separates two types of pairs: (1) descriptors of the
same object in similar poses to be close in the learned space, and (2) different objects
or different poses to be far away. During training, synthetic images are rendered from
CAD object models at various viewpoints created by vertices on an isosphere. At
inference time, retrieving the closest synthetic templates to the real input image in the
learned representation space enables object pose estimation as shown in Figure 2.5.

In this context, Balntas et al. [5] showed how to obtain more discriminative repre-
sentations by combining triplet loss with a regression loss. Similarly, Sundermeyer et
al. [128] trained an auto-encoder to reconstruct object images augmented with domain
randomization to learn representation space invariant to lighting, background.
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Figure 2.5: Template-matching object pose estimation proposed by Wolhart and
Lepetit [148]. During the training, images of different objects are mapped to well-
separated descriptors while images of the same object are mapped to descriptors
that capture the geometry of the corresponding poses (top left). New images are
then mapped to locations corresponding to the object and 3D pose, even in the
presence of clutter background (top right). At testing time, the method returns the
correct template correspond to input RGB-D images via nearest neighbor search in
the descriptor space (bottom). Figure from [148]. See Section 2.2.2

Figure 2.6: Correspondence-based pose estimation BB8 [115] where we first predict
the 2D reprojections of some 3D points and then use a PnP algorithm on these 2D-3D
correspondences to recover the object pose. Figure from [74]. See Section 2.2.3

2.2.3 Correspondence-based object pose estimation

A classical approach to solving the 6D object pose estimation problem is to establish
3D-to-2D or 3D-to-3D correspondences and then compute the pose with a PnP-
RANSAC algorithm. This approach is popular in object pose estimation thanks to its
robustness against outliers. One of the first learning-based correspondence-based
methods is BB8 [115], which uses deep networks to regress local 2D-3D correspon-
dences. Specifically, they first learn to segment objects in the image with a two-level
coarse-to-fine object segmentation, then apply a deep network within an image win-
dow centered on the detected object to predict the 2D reprojections of the corners of
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Figure 2.7: Dense correspondences in Pix2Pose [108]. The 3D points on the model
surface (left) are mapped to colored coordinates (middle). The 3D object coordinates
are predicted for densely sampled pixels of the input image (right) to establish 2D-3D
correspondences. The 6D object poses are then estimated from the correspondences
by using RANSAC. The image is taken from [108]. See Section 2.2.3

the 3D object’s bounding box. Figure 2.6 shows the 3D object’s bounding box corners
(Mi) and their 2D reprojections in the image (mi) used in BB8.

Instead of predicting sparse 2D-3D correspondences, some recent methods pro-
pose to predict dense correspondences using an encoder-decoder network such as
DPOD [157] or Pix2Pose [108]. These methods predict the 3D coordinates of each
pixel in a target image relative to the object’s coordinate system. Specifically, DPOD
represents 3D object coordinates via a UV map, which is a 2-channel image with
values ranging from 0 to 255. Similarly, Pix2Pose regresses not only 3D object coor-
dinates but also a confidence value based on prediction error, allowing for efficient
filtering of matches at inference time and speeding up pose estimation. We show an
example of dense correspondences used in Pix2Pose [108] in Figure 2.7.

Other relevant works in correspondence-based methods is PVNet [109], Single-
stage [58], and EPOS [53]. PVNet regresses pixel-wise unit vectors pointing to the
2D reprojections of 3D control points and uses these vectors to vote for the final
reprojections using RANSAC as shown in Figure 2.8. Single-stage proposes a deep
architecture that takes as input clusters of 2D locations and regresses the 3D pose.
EPOS represents objects by compact surface fragments to predict 3D location of the
pixel on the predicted fragment.

2.2.4 Direct pose estimation

This category directly estimates the 3D translation and 3D rotation of the object given
an image using learned features from deep neural networks. We distinguish between
two approaches within this category.

The first approach directly estimates the absolute pose from an input image. For
instance, in Figure 2.9, we show SSD6D [65] which extends single-shot object detector
SSD [81] to predict the 6D pose for each detection.

In contrast, the second approach estimates relative poses, commonly starts with
an initial pose estimate and iteratively refines the pose using a render-and-compare
strategy. A relevant example of this second approach is BB8 [115] as shown in
Figure 2.10. In BB8, a deep network is trained to improve the prediction of the 2D
projections by comparing the input image and a rendering of the object for the initial
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Figure 2.8: Dense 2D-to-3D correspondences and voting network used in
PVNet [109]. PVNet predicts unit vectors pointing to keypoints for each pixel, as
shown in (b), and localize 2D keypoints in a RANSAC-based voting scheme, as shown
in (c). The proposed method is robust to occlusion (g) and truncation (h), where the
green bounding boxes represent the ground truth poses and the blue bounding boxes
represent the predictions. The image is taken from [109]. See Section 2.2.3

pose estimate. Similarly, DeepIM introduces a novel parametrization of the pose
update that does not use intermediate keypoints and can be trained end-to-end.
CosyPose [71] builds upon this parametrization of DeepIM, incorporating a novel
disentangled loss from CDPN [78], rotation6D [166], and strong data augmentation
that leads to more stable training and improved performance, achieving state-of-the-
art results for the BOP challenge 2020 [56].

Overall, direct pose estimation methods have an advantage in relying solely on
learning-based components, allowing them to improve their performance by scaling
up the training datasets.

2.3 CAD-based pose estimation for novel objects

This section provides an overview of learning-based methods that can be applied
to novel objects without re-training, and only rely on the CAD model of test ob-
jects. We first discuss object detection, segmentation methods applied for novel
objects (Section 2.3.1). We then discuss each group of pose estimation methods, in-
cluding template matching methods (Section 2.3.2), correspondence-based methods
(Section 2.3.3), and direct pose estimation methods (Section 2.3.4).

2.3.1 Instance detection and segmentation

Object segmentation methods traditionally focus on scenarios known as “closed-
world" settings, where the training and test sets share the same object classes. Never-
theless, recent observations by Du et al. [34, 33] suggest that class-agnostic instance
segmentation networks can effectively generalize to previously unseen object classes.
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Figure 2.9: Direct pose estimation in SSD6D [65] A CNN is used to directly detect
the position, size, and orientation of objects in an image. The figure (b) illustrates
the discretization of the space of possible object orientations. The simple geometric
reasoning depicted in the figure (c) allows for the recovery of the z-axis translation
of the object pose given the size of its 2D bounding box. Image taken from [70]. See
Section 2.2.4

Building upon this insight, Zhao et al. [161] leverage saliency detection models to
solve the novel class discovery task in 2D segmentation.

Commonly used in robotics, UOIS-Net [155] uses a two-stage approach to segment
novel objects. It operates on the depth channel of captured RGB-D images to generate
object instance center votes and assembles them into rough initial masks. These
masks are subsequently refined using the RGB channels. Xiang et al. [151] also
propose an RGB-D based method that uses learned feature embeddings and applies
a mean shift clustering algorithm to discover and segment unseen objects.

To avoid using depths, Durner et al. [35] use horizontal correlation to extract
disparity RGB-based features and segment novel objects from stereo RGB images.
It is worth noting that UOIS-Net [155], Xiang et al. [151], and Durner et al. [35]
are RGB-D or stereo RGB approaches, while in this thesis, we focus the detection,
segmentation of unseen objects from only CAD models or a single reference RGB
image, which is more applicable.

Recently, Shugurov et al. [123] introduced OSOP that can be used to segment novel
objects from the CAD model and show the promising results on BOP datasets [51].
However, in their method, detector modules is built upon features of templates,
rendered from CAD model of each object, and requires a feed-forward for each
testing object considered. Therefore, its complexity is linear to the number of testing
objects.
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Figure 2.10: Direct pose estimation via iterative render-and-compare in BB8 [115].
Given a first pose estimate, shown by the blue bounding box, BB8 generates a color
rendering of the object. A network is trained to predict an update for the object pose
given the input image and this rendering, to get a better estimate shown by the red
bounding box. The same strategy is applied multiple times iteratively. The image is
taken from [74]. See Section 2.2.4

Figure 2.11: CAD-based novel object segmentation in [17]. Their method first
uses offline rendering to generate reference images and Segment Anything [69] to
generate proposal mask candidates, which are then classified using visual cues from
ImageBlind [40]. Image reproduced from [17]. See Section 2.3.1

More recently, Segment Anything (SAM) [69] has introduced a powerful founda-
tion model for image segmentation capable of segmenting all objects in a given RGB
image. Chen et al. [17] use SAM to extract object proposals, which are then combined
with visual clues extracted by ImageBlind [40], enables novel object segmentation
from only CAD models, as shown in Figure 2.11. While their method shows promis-
ing results, there is still significant gap comparing to supervised methods such as
Mask R-CNN [44] used in CosyPose [71].
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Figure 2.12: Template matching pose estimation for novel objects in Multi-
Path [127]. (a) During training one encoder is shared among all objects, while
each decoder reconstruct views of a single object. (b) This turns the encoder into a
viewpoint-sensitive feature extractor, that generates expressive encodings for multi-
ple trained and even untrained objects. (c) Template-matching pose estimation during
the inference. Top: creating a codebook from the encodings of discrete synthetic
object views; bottom: object detection and 3D orientation estimation using the near-
est neighbor(s) with highest cosine imilarity from the codebook. Image reproduced
from [127]. See Section 2.3.2

2.3.2 Template matching

As discussed in previous section, Wolhart and Lepetit [148] proposed to learn dis-
criminative representations of templates, which are images of objects associated with
the corresponding 3D poses. Pose estimation could then be achieved by matching
the input image against these templates in an image-retrieval manner.

Building upon this concept, Balntas et al. [5] then showed how to obtain more
discriminative representations to generalize on novel objects. While the ability to
consider novel objects from their 3D models is the motivation for this thesis, it was
only superficially demonstrated.

MultiPath [127] proposed an extension of Implicit [128] with a novel architecture
with multiple decoders to adapt to different object types that can generalize to novel
objects as shown in Figure 2.12.

While their results indeed show this generalization, the testing objects must
remain similar to the training ones. As a consequence, this method has been demon-
strated only on the T-LESS dataset [54], which depicts different kinds of electrical
appliances that bear strong visual similarities.

Recently, MegaPose [72] has proposed a two-stage approach for estimating 6D
pose of novel objects, as depicted in Figure 2.13. In the first stage, MegaPose uses
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Figure 2.13: Two-stage render-and-compare pose estimation for novel objects
in [72]: (a) Left: Given a cropped input image, the coarse module renders object
templates in multiple poses, then classifies which template best matches the observed
image, (b) Right: Given an initial pose estimate from coarse network, the refiner ren-
ders the objects at the estimated pose (blue axes) along with 3 additional viewpoints
(green axes) to predict an updated pose estimate. Figure from [72]. See Section 2.3.2

templates in a render-and-compare manner to find a coarse pose. Specifically, unlike
previous methods that use nearest neighbors search [148, 5, 127], their method uses
a network that takes a test image-template pair as input and outputs a similarity
score. This feed-forwarding is applied for all templates, and the template with the
highest estimated scores is considered as the prediction. The second stage involves
another deep network that iteratively refines the prediction from the first stage,
similar to DeepIM [77]. Since MegaPose requires a feed-forward for each pair input
image-template, which makes its runtime time-consuming, requiring more than 1.6
seconds per input detection on a single GPU V100.

Figure 2.14: Correspondence-based pose estimation for novel objects in [110].
Given an input RGB image, their method first predicts Local Surface Embeddings
(LSEs) for each pixel that we match with the LSEs of 3D points on the CAD models,
then uses a PnP algorithm and RANSAC to estimate the 3D poses from these corre-
spondences. Image taken from [110]. See Section 2.3.3

33



Figure 2.15: Dense correspondence-based method in OSOP [123]. Their method
is divided into four main stages: 1) One-shot object localization conditioned on
the 3D model. 2) Initial viewpoint estimation by template matching. 3) Dense 2D-
2D matching between the image patch and the matched template. 4) 6 DoF pose
estimation with PnP+RANSAC or Kabsch+RANSAC. Image taken from [123]. See
Section 2.3.3

2.3.3 Correspondence-based object pose estimation

Pitteri et al. [110] introduce Local Surface Embeddings (LSEs), a method for estimating
the 6D pose of new objects from their CAD models. LSEs are calculated from CAD
models, capturing local geometry at each 3D point on the object surface while being
translation-invariant and rotation-invariant. Given the 3D model of target object,
they first calculate a set of LSE. Their method then uses a U-Net to calculate similar
embeddings from input RGB images. The U-Net is trained on a small set of training
objects and generalizes on novel objects. Given two sets of LSEs, their method can
then match CAD models to input images and establish 2D-3D correspondences.
Finally, RANSAC is used to estimate the 6D object pose as shown in Figure 2.14.

Since this matching process is performed independently for each 3D point, it has
many ambiguities and a combinatorial matching cost, resulting in frequent failures.
Another limitation of LSEs is that it is only efficient for objects with prominent
corners. Consequently, this method has been demonstrated primarily on the T-LESS
dataset.

Two other relevant correspondence-based approaches for novel objects are
OSOP [123] and ZS6D [3]. Both methods initially render multiple templates
from CAD models, predict 2D-to-2D correspondences, then convert them into
2D-to-3D correspondences as the pose of templates is known, and finally use
RANSAC-PnP [75] to recover the 6D object pose. The main difference between these
two approaches is on how they predict the correspondences: OSOP use a deep
network to predict dense 2D-to-2D correspondences while ZS6D uses self-supervised
vision transformers [15] to find a set of sparse 2D-to-2D correspondences via nearest
neighbor search. We show in Figure 2.15 the overview of OSOP [123].
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Figure 2.16: Direct pose estimation in PosefromShape [154]. (a) A network is used
to predict the orientation of a novel object in an RGB image on diverse training data
including many categories. (b) The trained model can be tested on novel objects such
as horses or figurines. Image reproduced from [154]. See Section 2.3.4

2.3.4 Direct pose estimation

Learning-based direct pose estimation methods can be scaled up to handle
novel objects by using large-scale training data. Built upon this simple idea,
PosefromShape [154] proposed a method to regress the 3D rotation of an object,
using a shape encoder to encode a novel object’s appearance and coordinate system
as shown in Figure 2.16.

Similarly, DeepIM [77] has demonstrated that its method can generalize to unseen
categories when trained on a wide range of categories in ModelNet. While this
experiment of DeepIM was conducted only on synthetic datasets, shows that pose
estimation models can effectively generalize to unknown categories by learning
diversity from various categories during training.

The refined network in MegaPose [72] has demonstrated a similar observation: by
training a deep network on large-scale datasets, they showed that their method can
refine accurately 6D pose estimates of novel objects.

2.4 CAD-free pose estimation for novel objects

Previous sections have discussed CAD-based generalizable methods, which are
relevant for warehouse or factory settings where CAD models of target objects are
often available. However, this setting still has limitations in real-world scenarios since
it requires expensive devices to scan 3D models of test objects.

To overcome this issue, we discuss in this section methods that do not require a
3D model. First, we review category-level methods in Section 2.4.1. We then discuss
in Section 2.4.2 methods for 6D object tracking that do not require CAD models but
rely on temporal constraints. Finally, we review methods based on multi-view images
in Section 2.4.3.
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Figure 2.17: Category-level pose estimation with normalized object coordinates
in [143]. The normalized object coordinate space, which is contained within a unit
cube, displays a 3D space for each category. Within this shared space, all instances
of a given category, such as cameras, are aligned in terms of orientation, while their
sizes are normalized to fit within the unit cube. This allows for direct prediction of
2D-3D correspondences for novel objects that belong to a known category. As shown
in (b), example categories include bowls, cameras, cans, laptops, and mugs. Image
taken from [70]. See Section 2.4.1.

2.4.1 Category-level methods

One way to avoid retraining on new object instances and CAD-model requirement
is to consider object categories, and train a model on target categories that will
generalize to new instances of these categories [165, 143, 21, 76, 89]. We show in
Figure 2.17 a relevant example from NOCS [143].

While such an approach can be useful in some applications, such as scene un-
derstanding, in many others, the new objects do not belong to a known category. By
contrast, this thesis focuses on developing methods that can generalize to new objects
with no similarity in shape to the objects used to train the initial model.

2.4.2 Temporal 6D pose tracking

Instead of relying on a single image for absolute pose estimation, tracking methods
exploit temporal information. This problem has been formulated under a deep
learning framework, where a network is trained to regress the pose difference between
image pairs extracted from RGB [25, 12] or RGB-D videos [37, 38, 164, 140, 145].
Within the context of generalize object pose tracking, [12, 145, 38] has shown that
their methods can be applied to new objects. We show an example with BundleTrack
in Figure 2.18. However, their method still require 3D information in the form of a
CAD model [12] or depth images [145, 38].

2.4.3 Multi-view image-based methods

A few recent methods such as LatentFusion [107], Gen6D [83], OnePose [126] address
the problem of not having the 3D models for the target objects by first acquiring and
registering reference RGB images taken from multiple viewpoints. LatentFusion [107]
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Figure 2.18: 6D pose tracking for novel objects in BundleTrack [145]. Their method
is composed of six stages: 1) an image network is used to segment object masks; (2)
another network detects keypoints and corresponding descriptors; (3) keypoints are
matched and coarse registration is used on consecutive frames to estimate an initial
relative poses; (4) keyframes are selected and form a pose graph; (5) online pose
graph optimization outputs a refined, spatiotemporally consistent pose; and (6) the
latest frame is included in the memory pool if it represents a novel view, enriching
diversity. Image taken from [145]. See Section 2.4.2.

Figure 2.19: CAD-free novel object pose estimation in OnePose [126]. Their method
is composed of five stages for estimating 6D pose of novel objects: 1) For each object,
a video scan with RGB frames and annotated camera poses; (2) a Structure from
Motion (SfM) reconstructs a sparse point cloud; (3) The correspondence graphs are
built during SfM, which represent the 2D-3D correspondences in the SfM map; (4)
2D descriptors are aggregated to 3D descriptors to generate 2D-3D matches; (5)
Finally, the object pose is computed by solving the PnP problem. The image is taken
from [126]. See 2.4.3

also requires an additional training phase to obtain a 3D latent representation, while
OnePose [126] necessitates optimization with Structure-from-Motion to establish cor-
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respondence graphs as shown in Figure 2.19. While these methods show promising
results, it is noteworthy that capturing the reference images still demands human
expertise and some time for capture and registration.
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Chapter 3

CNOS: A Strong Baseline for
CAD-based Novel Object
Segmentation
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Figure 3.1: Performance on the seven core datasets of BOP challenge [51]. Our
method, CNOS, relies on FastSAM [160] for generation of segmentation proposals
and on DINOv2 [106] for visual description. CNOS outperforms the unsupervised
method of Chen et al. [17] and even the supervised method Mask R-CNN [44],
which was trained on tens of thousands of images per BOP dataset and used in
CosyPose [71]. Similarly to Mask R-CNN [44], the runtime of CNOS is dominated by
the proposal stage.

The work presented in this chapter was initially presented in:

[102] Van Nguyen Nguyen, Thibault Groueix, Georgy Ponimatkin, Vincent Lepetit,
Tomas Hodan. CNOS: A Strong Baseline for CAD-based Novel Object Segmentation.
International Conference on Computer Vision Workshops (ICCVW), 2023.
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As discussed in Section 2, performing object pose estimation typically involves
two main steps: (1) the target objects are detected/segmented in the input image,
and (2) the 6D object poses are then estimated from the detected regions [51]. Recent
works such as MegaPose [72] introduced effective CAD-based object pose estimation
methods. However, these methods mainly focus on the second step and require input
2D bounding boxes, which restricts their applicability to scenarios where precise 2D
bounding boxes are available.

To address the gap, in this chapter, we propose a simple method for object de-
tection and segmentation that only requires CAD models of the target objects. The
method is dubbed CNOS for CAD-based Novel Object Segmentation.

In CNOS, new objects are onboarded by rendering their CAD models and de-
scribing each rendered template by the DINOv2 cls token [106]. Given an RGB
input image, segmentation proposals are extracted from the image by Segment Any-
thing (SAM) [69] or Fast Segment Anything (FastSAM) [160] and matched against
the templates based on the similarity between their DINOv2 cls tokens. Render-
ing the templates takes less than 2 seconds per CAD model which is much faster
than retraining of supervised methods, which typically requires several hours. The
choice of DINOv2 for measuring the similarity between templates and proposals is
mainly motivated by its ability to effectively address the domain gap between real
and synthetic images. We also demonstrate that photo-realistic rendering techniques
of BlenderProc [26], which require approximately 1 second to render an image, can
be leveraged to further mitigate this domain gap and enhance accuracy. Experiments
on the seven core datasets of the BOP challenge [51] demonstrate the state-of-the-art
performance of CNOS.

As shown in Figure 3.1, CNOS outperforms the recent unsupervised method for
CAD-based segmentation by Chen et al. [17] and even Mask R-CNN [44], a supervised
method that was trained on tens of thousands of images per BOP dataset and used in
CosyPose [71].

3.1 Method

In this section, we provide a detailed description of our three-stage approach for
CAD-based novel object segmentation. We first describe the onboarding stage in
Section 3.1.1, where we extract visual descriptors from renderings of the CAD models.
In Section 3.1.2, we explain the proposal stage, which involves obtaining all possible
masks and their descriptors. Finally, in Section 3.1.3, we discuss the matching stage,
where object masks are retrieved and labeled based on visual descriptors of their
CAD models.

3.1.1 Onboarding stage

In the onboarding stage, we render a set of RGB synthetic templates and extract
their visual descriptors using DINOv2 [106]. To ensure robust object segmentation
under different orientations, we render CAD models under 42 viewpoints as shown
in Figure 3.3. These 42 viewpoints are defined by the icosphere primitive of Blender 1

which has been shown in [104] to provide well-distributed view coverage of CAD

1bpy.ops.mesh.primitive_ico_sphere_add()
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Figure 3.2: CNOS overview. Given CAD models of the target objects, the objects
are onboarded by (i) rendering a set of templates showing the models from different
viewpoints, and (ii) describing the templates by the DINOv2 cls token (Section 3.1.1).
At inference time, segmentation proposals are generated from the input RGB image
using SAM or FastSAM (Section 3.1.2), and the proposals are matched against the
templates by comparing their DINOv2 cls tokens (Section 3.1.3).

models for robust template matching. Additionally, we experiment with denser
viewpoints by dividing each triangle of the icosphere into four smaller triangles. The
rendering process results in a total of No × Nv templates, where No is the number of
CAD models and Nv is the number of viewpoints. We then crop the templates with
the ground-truth bounding boxes and use the DINOv2 cls tokens as their visual
descriptors Dr of size No × Nv × C. By default, we use Nv = 42 and C = 1024.

3.1.2 Proposal stage

For each testing RGB image, we use SAM [69] or FastSAM [160] with a default
configuration to generate a set of Np unlabeled proposals, where each proposal i is
defined by a mask Mi. Np is not fixed and varies depending on the input RGB image.

To compute the visual descriptor for each proposal i, we first remove the back-
ground of the input image using the corresponding mask Mi. Subsequently, we crop
the image using the model bounding box derived from Mi. Since each proposal mask
Mi has a different bounding box size, parallel processing becomes unfeasible. To
overcome this, we add a simple image processing step including scaling and padding
in order to resize all proposals to a consistent size of 224× 224. This standardization
enables efficient parallel processing of proposals in a single batch. Then, we extract
the DINOv2 cls tokens from the processed proposals and use them as their visual
descriptors Dp of size Np × C.
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Figure 3.3: Visualization of templates for the “benchwise" object from LM [46]
rendered with Pyrender [113]. 42 templates were rendered from viewpoints defined
by the icosphere [104].

3.1.3 Matching

The goal of the matching stage is to assign each proposal i an object ID oi and a
confidence score si. To this end, we compare each proposal descriptor in Dp with
each template descriptor in Dr using the cosine similarity. This comparison step
produces a similarity matrix of size Np × No × Nv.

View aggregation. By aggregating the similarity scores over all Nv templates for
each CAD model, we obtain a matrix of size Np × No. This matrix represents the
similarity between each proposal pi and each CAD model. We experiment with
different aggregation functions, such as Mean, Max, Median, and Mean of top k
highest, noted Meank, and find that Meank yields the best results.

Object ID assignment. To assign the object ID oi and confidence score si to each
proposal, we simply apply the argmax and max functions on the similarity matrix
Np × No over the No objects. This yields a similarity matrix of size Np defining the
confidence score for Np proposals.

Output. At the end of the matching stage, we obtain a set of labeled proposals,
where each proposal is defined as {Mi, oi, si}, where Mi is the modal mask (i.e., a
mask covering the visible part of the object surface [51]), oi is the object ID, and si
is the confidence score. Some of these proposals may still be incorrectly labeled. To
address this, it is possible to apply a threshold δ on the confidence score threshold.
The figures in Section 3.2.2 show CNOS’s segmentation results with δ = 0.5.
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3.2 Experiments

In this section, we describe the experimental setup (Section 3.2.1), compare our
method with previous works [17, 44, 125] on the seven core datasets of the BOP
challenge [51] (Section 3.2.2), and conduct an ablation study focused on the accuracy
under different aggregating functions and different numbers of rendering view-
points, and on the run-time (Section 3.2.3). Finally, we discuss the use of CNOS in a
pipeline for 6D pose estimation of novel objects (Section 3.2.4) or in CAD-free novel
object segmentation.

3.2.1 Experimental setup

Datasets. We evaluate our method on the test set of seven core datasets of the BOP
challenge [51]: LineMod Occlusion (LM-O) [8], T-LESS [54], TUD-L [50], IC-BIN [27],
ITODD [30], HomebrewedDB (HB) [64] and YCB-Video (YCB-V) [150]. In total, the
datasets include 132 different objects shown in cluttered scenes with occlusions.
The objects are of verious types: textured or untextured, symmetric or asymmetric,
household or industrial.

Evaluation metric. We evaluate our method using the Average Precision (AP)
metrics, following the COCO metric and the BOP challenge evaluation protocol [51].
The AP metric is calculated as the mean of AP values at different Intersection over
Union (IoU) thresholds ranging from 0.50 to 0.95 with an increment of 0.05.

Baselines. We compare our method with Chen et al. [17], the most relevant work to
ours. They use a three-stage CAD-based object segmentation approach, incorporating
SAM [69] for image segmentation and ImageBlind [40] for visual descriptor extraction.
Their use of 72 templates per CAD model resulted in the best performance according
to their paper. Additionally, we compare our method with two relevant supervised
methods from the BOP challenge [51]: Mask R-CNN [44], which was trained on
real or synthetic training images specific to each dataset and used in CosyPose [71],
and ZebraPose [125], which is currently the state-of-the-art for this task in the BOP
challenge.

Implementation details. For the proposal stage, we use the default ViT-H SAM [69]
or the default FastSAM [160], which has demonstrated promising results in terms of
run-time efficiency. For extracting visual descriptors, we use the default ViT-H model
of DINOv2 [106].

To further evaluate the performance of our method, we conducted a comparison
using two sets of templates. The first set of templates was generated using Pyrender
[113] from 42 pre-defined viewpoints. It is worthy to note that Pyrender computes the
Direct Illumination and it is extremely fast, takes on average 0.026 second per image.
The second set of templates comprised 42 realistic rendering templates selected from
the available synthetic images of the PBR-BlenderProc4BOP training set provided
in the BOP challenge. These realistic templates were specifically chosen to closely
match the orientations of the 42 predefined viewpoints in the first set. Since the PBR-
BlenderProc4BOP training images possibly have occlusions, we chose only images
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Method Rendering
BOP Datasets

LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Mean

Su
pe

rv
is

ed

1 MaskRCNN [44] (Synth) - 37.5 51.7 30.6 31.6 12.2 47.1 42.9 36.2

2 MaskRCNN [44] (Real) - 37.5 54.4 48.9 31.6 12.2 47.1 42.9 39.2

3 ZebraPose [125] (Synth) - 50.6 62.9 51.4 37.9 36.1 64.6 62.2 52.2

4 ZebraPose [125] (Real) - 50.6 70.9 70.7 37.9 36.1 64.6 74.0 57.8

U
ns

up
er

vi
se

d 5 Chen et al. [17] - 17.6 9.6 24.1 18.7 6.3 31.4 41.9 21.4

6 CNOS (SAM) Pyrender[113] 33.3 38.3 35.8 27.2 14.8 45.9 57.6 36.1

7 CNOS (SAM) BlenderProc [26] 39.6 39.7 39.1 28.4 28.2 48.0 59.5 40.4

8 CNOS (FastSAM) BlenderProc [26] 39.7 37.4 48.0 27.0 25.4 51.1 59.9 41.2

Table 3.1: Comparison of our method with [44, 125, 17] on the seven core datasets
of the BOP challenge [51]. MaskRCNN and ZebraPose are retrained specifically
on these objects with synthetic renderings of the CAD model (noted as “Synth")
or real images of the object (noted as “Real"). We classify them as “supervised” in
contrast with [17] and our method which we call “unsupervised” because it requires
no retraining for novel objects. We report the AP metric (higher is better) using the
protocol from [51]. We highlight in blue the best supervised method and in yellow
the best unsupervised method. Our method not only significantly outperforms [17]
under the same settings but also surpasses the supervised method MaskRCNN,
highlighting its ability to generalize.

where the target objects are fully visible. The templates of target objects are finally
obtained by making the background black using the ground-truth mask and cropping
regions with the ground-truth bounding box.

In order to maintain a consistent run-time across all datasets, we resize the images
while preserving their aspect ratio. Specifically, we ensure that the width of each
input RGB testing image is fixed at 640 pixels. All our experiments were conducted
on a single V100 GPU.

3.2.2 Comparison with the state of the art

In Table 3.1, we show that CNOS outperforms Chen et al. [17] by a significant margin
of absolute 19.8% AP. Furthermore, despite not being trained on the testing objects of
the BOP datasets, our method surpasses the performance of Mask R-CNN [44] used
in CosyPose [71], which was specifically trained on these objects. This highlights the
generalization capability of our method.

We qualitatively found that the generated segmentation proposals usually include
ones that are very well aligned with the target object instances, and that most mistakes
are due to erroneous DINOv2-based classification of the proposals. Improving
the proposal classification would be crucial to close the gap between CNOS and
supervised state-of-the-art approaches such as ZebraPose.

We show in Figure 3.4 qualitative results of our method on LM-O [8], HB [64]
and YCB-V [150] datasets.
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(21 objects)
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Figure 3.4: Qualitative results on LM-O [8], HB [64] and YCB-V [150]. The first
column shows the input CAD models. In cases where there are more than 16 models,
we only show the first 16 to ensure better visibility. The second column show the
input RGB image and the last column depicts the detections produced by our method
CNOS with confidence scores greater than 0.5. Interestingly, in the last row, even
though the segmentation proposals in CNOS (SAM) and CNOS (FastSAM) are very
similar, their final labels differ for a few objects. This inconsistency arises from
DINOv2-based classification of the proposals as discussed in Section 3.2.2

3.2.3 Ablation study

Segmentation model Descriptor model AP Run-time (s)

FastSAM-s ViT-s 32.1 0.18

FastSAM-s ViT-l (default) 33.8 0.25

FastSAM-x (default) ViT-s 38.0 0.27

FastSAM-x (default) ViT-l (default) 39.7 0.33

Table 3.2: Ablation study of different FastSAM segmentation models [160] and
DINOv2 descriptor models [106] on LM-O.

Model size vs. run-time. We present the results for FastSAM and DINOv2 using
various base models in Table 3.2, highlighting the trade-off accuracy-runtime.

Rendering. Table 3.1 demonstrates the performance of our method using two types
of rendering: Pyrender [113] in row 6 and BlenderProc [26] in row 7. The results
indicate that incorporating realistic rendering significantly reduces the domain gap
between synthetic and real images, yielding a 4.3% improvement in the AP metric.
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Method
Viewpoint density

Coarse (42) Dense (162)

CNOS (SAM) 39.6 39.5

CNOS (FastSAM) 39.7 39.7

Table 3.3: Ablation study on the number of viewpoints on LMO dataset [8]. The
denser viewpoints are created by subdividing each triangle of the icosahedron (used
to create coarse viewpoints) into four smaller triangles.

Number of viewpoints. As shown in Table 3.3, using more viewpoints does not
bring any improvement compared to the coarse viewpoints. This can be explained
by the fact that the current set of 42 coarse viewpoints already provides sufficient
coverage of the 3D objects.

Run-time. In Table 3.4, we present the average run-time of each stage in our method
for a given CAD model. In the onboarding stage, the average rendering time for one
image with Pyrender[113] is 0.026 second while with BlenderProc [26] is around 1
second per image on a single V100 GPU. It is important to note that the onboarding
stage is performed once for each CAD model. In terms of run-time, the onboarding
stage is clearly bottlenecked by the generation of templates, while the proposal stage
is currently bottlenecked by the segmentation algorithm.

Method
Run-time (second)

Onboarding Proposal Matching

CNOS (SAM, Pyrender) 1.22 1.58 0.13

CNOS (FastSAM, Pyrender) 1.22 0.22 0.12

CNOS (FastSAM, PBR) 42.1 0.22 0.12

Table 3.4: Run-time. We report the runtime of each stage of our method on a single
V100 GPU. The runtime of the onboarding stage includes both the rendering time
and the visual descriptor extraction time for each CAD model.

3.2.4 Discussion

Our intention was originally to use the DINOv2 cls token not only to recognize the
object but also to estimate its initial pose that could be refined in a subsequent step.
However, as illustrated in Figure 3.5, this approach did not yield successful results, as
the DINOv2 cls token seems to carry sufficient information about the object identity
but not about the object pose.

3.3 Conclusion

In this chapter, we presented a simple yet powerful method for novel object seg-
mentation solely based on their CAD models, without the need of any training. The
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Figure 3.5: Visualization of the nearest neighbors. We show proposals along with
five retrieved templates with the most similar DINOv2 cls tokens. The retrieved
templates correspond to the same object but to poses that do not match the pose in
the proposals – this suggests that the DINOv2 cls token can be effectively used to
recognize the objects, but not to estimate the pose.

method achieves a surprisingly high accuracy, comparable to previous supervised
methods trained on large-scale annotated datasets. We hope that CNOS will serve as
a standard baseline for CAD-based novel object segmentation and will be employed
as the initial stage of novel object pose estimation pipelines.

47





Chapter 4

Templates for 3D Object Pose
Estimation Revisited: Generalization to
New Objects and Robustness to
Occlusions

Training objects New objects

w/o
occlusion w/ occlusion w/o

occlusion w/ occlusion

Query image

Template
recovered

Query image

Template
recovered

Figure 4.1: Our method can estimate the 3D pose of new objects in query images by
matching them with templates created from their 3D models. These new objects can
be very different from the ones, and can be partially occluded in the query images.

The work presented in this chapter was initially presented in:

[104] Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann, Vincent Lep-
etit. Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects
and Robustness to Occlusions. Computer Vision and Pattern Recognition (CVPR),
2022.
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As discussed in Section 1.4, template-based approaches, such as [148, 5] offer the
promise of generalizing to arbitrary new objects by learning an image embedding
used to match the input image to a series of templates generated from their CAD
models. Unfortunately, their use with new objects has been demonstrated only
anecdotally, and we show in our experiments that these methods struggle in this
challenging scenario, particularly in the presence of occlusions. We indeed notice
that the global representations used in [148, 5] to compare the input image to the
CAD-generated templates have two limitations. First, they generalize poorly to new
objects in the presence of a cluttered background, and result in inaccurate pose
estimation even for uniform background. Furthermore, they are ill-suited to handle
occlusions.

These observations motivate us to keep the 2D structure of the images for a
template-based approach. More precisely, given a small set of training objects, we
learn local features that can be used to reliably match real images and synthetic
templates. Relying on local features allows us to discard the background: While
the object’s mask in the input image is not available at run-time, we can use the
template’s mask, thus solving the first limitation of global representations. Note that
using the template’s mask to instead remove the background in the real image before
computing the image global representation requires us to recompute the input image
representation for each template, which would result in very slow matching.

As will be shown in this chapter, using local features also results in much more
accurate poses. This can be explained by the fact that we do not use pooling opera-
tions, which remove critical information about the poses, especially for new objects.
Finally, yet another advantage is that our method can be robust to partial occlusions.
To do so, we introduce a measure to evaluate the similarity between two images
that explicitly takes into account the object’s mask in the template and the possible
occlusions in the query image.

We demonstrate the benefits of our approach on the Linemod [46], Linemod-
Occluded [8], and T-LESS [54] datasets. It consistently outperforms previous
works [148, 5, 128, 127] on new objects by a large margin.

4.1 Contrastive learning

Given a collection of images, contrastive learning aims to learn an embedding space
where similar images are close to each other while dissimilar ones are far apart. [48,
149, 105, 131, 43, 18] leverage unlabeled images and strong data augmentation to learn
powerful image features that achieve results competitive with those of supervised
learning on various downstream tasks.

In our context, PoseContrast [153] exploits a form of contrastive learning, leverag-
ing the pose labels to learn a pose-aware embedding space for class-agnostic 3D object
pose estimation. One limitation of PoseContrast is that different objects can be mixed
with each other in the embedding space, thus making it impossible to recognize the
correct object instance from the input image. Moreover, like PosefromShape [154],
PoseContrast [153] does not attempt to recognize the object.

By contrast, [148, 5] rely on contrastive learning to learn an embedding space that
is variant to both the object pose and the object instance. To this end, they rely on a
triplet loss for learning object-discriminative features, together with a pairwise loss
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for pose-discriminative features. Similarly, we use contrastive learning to extract a
discriminative feature representation, but we show that the InfoNCE [105] loss is
the most simple and effective choice. Our experiments also show that most of the
performance of our method in terms of generalization and robustness to occlusions
come from our use of local representations.

4.2 Method

Our goal is to recognize new objects in color images and predict their 3D poses.
We do this by matching the color image of the object with a set of templates. A
template is a rendered image of a 3D model in some 3D pose. For each new object,
the template set contains many templates, rendered from different views sampled
around its 3D model. As the templates are annotated with the object’s identity and
pose, the method returns the identity and pose of the template most similar to the
input image.

The challenge then is to measure the similarity between templates and input
images. This should be done reliably despite that no real images of the new objects
have been seen beforehand, the objects can be partially occluded, the lighting differs
between the templates and the real images, and the object’s background is cluttered
in the real images.

In this work, motivated by the better repeatability and robustness to occlusions of
local representations compared to global ones, we measure the similarity between
an input image and a template based on local image features extracted using a deep
model. We train this model using pairs made of a real image and a synthetic image
from a small set of training objects. Note that these training objects can be very
different in appearance from the new objects.

We start this section with an analysis of the limits of global representations in
Section 4.2.1. We then detail in Section 4.2.2 our training procedure. It relies on
a similarity measure that compares the local features of real images and synthetic
templates. At run-time, we use an extended version of this similarity function that
explicitly estimates which local features in the input image are occluded and discards
them. We discuss this in Section 4.2.3. Finally, we detail how we generate the
templates in Section 4.2.4.

4.2.1 Motivation and analysis

We present in this section two experiments that point out the main drawbacks of
global representations in template matching when working with unseen objects.

Cluttered background. A first drawback of global representations is their poor
ability to represent unseen objects on cluttered backgrounds. To show this, we plot
in Figure 4.2 the t-SNE visualization [136] of the global representations learned by
[5] and local representations learned by our method for real images of training and
new objects of the Linemod [46] dataset.

The first column of Figure 4.2 shows that both representations manage to cluster
the images of each training object together, despite the fact that the images of the
objects are captured with a cluttered background. The second column shows that
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Figure 4.2: Understanding the influence of background on different image rep-
resentations, with T-SNE visualizations of the image representations learned by
[5] (first row) and by our method (second row) for real images of Linemod objects.
For a given column, all the plots have the same scale for comparison.

global representations of [5] cannot disentangle the images of unseen objects, while
our representations can. To better understand the reason behind this, we remove the
background in the images by replacing it with a uniform color using the ground-truth
object masks. As shown in the third column, the representations are now disentan-
gled. This shows the influence of the background on the global representations for
unseen objects, and that our representations are robust to cluttered backgrounds.

Pose discrimination. A second drawback of global representations is their poor
reliability when matching the real image of an unseen object with the synthetic
template for the corresponding 3D pose, even when the object identity is known and
the background is uniform. This can be explained by the fact that the pooling layers
remove important information. This information loss appears to be compensated by
the rest of the architecture for the training objects, but this compensation does not
generalize to unseen objects.

To show this, we visualize in Figure 4.3 the correlation between pose distances
and representation distances for unseen objects, as done in [148, 5]. While both
representations result in a strong correlation for training objects, this correlation is lost
when considering unseen objects for the global representations but not for ours. Even
without background, the correlation is still very low for global representations [5].

4.2.2 Framework

In each training iteration, we sample N positive pairs, where pair i is composed of a
real image Qi depicting a training object and of a synthetic template Ti of the same
object in a similar 3D pose. Following [148], we deem the two viewpoints similar
if the angle between them is less than 5 degrees. All the pairs composed by a real
image and a synthetic image of different objects or dissimilar poses (larger than 5
degrees) are defined as negative pairs.
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Figure 4.3: Visualization of the correlation between pose distances and represen-
tation distances, for understanding the discriminative power of different image
representations for pose retrieval. First row is for [5], second row is for our method.
Please see Section 4.2.1.
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Figure 4.4: At training time, we use pairs made of a real image and a synthetic
template to train a network to compute local features, from which the similarity
between the two images can be predicted. At run-time, we apply this network to
images of objects not seen during training to compute their local features. We can
then retrieve the object pose by matching the image against the database of templates.

Triplet loss. [148] proposed a metric learning approach based on the intuition that
the distance between feature descriptors for positive pairs should be closer in the
learnt embedding space than negative pairs. To learn this property, [148] used a
training loss L = Ltriplet + Lpair where:

• Ltriplet is the triplet term, which allows the network to learn features such that
the distance in the learned embedding space between the positive pairs ∆(i)

+ is
lower than the distance between the negative pairs ∆(i)

− within the limits of the
margin m. This triplet term is defined as

Ltriplet =
N∑
i=1

max

(
0, 1− ∆

(i)
+

∆
(i)
− +m

)
(4.1)

• Lpair =
∑N

i=1 ∆
(i)
+ is the pairwise term, to minimise distances between two

images of identical poses but different viewing conditions.
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Figure 4.5: Illustration of feature similarity when not using the occlusion mask
O (second row) and when using it. As discussed in Section 4.2.3, using O allows
“turning off” the possible occluded local features in the similarity score.

[5] made an extension of this work by proposing a triplet loss which focuses only
on learning object-discriminative features while using a pairwise loss to learn an
embedding space analogous to the pose differences.

While these two losses work well, we experimentally show that the recent standard
contrast loss InfoNCE [105] is the most simple and effective choice.

InfoNCE loss. For each real image Qi, we also create N − 1 negative pairs by
combining it with synthetic templates Tk of other pairs in the current batch, with
1 ≤ k ≤ N, k ̸= i. Altogether, this yields N positive pairs and (N − 1)×N negative
pairs for each batch. We train our model to maximize the agreement between the
representations of samples in positive pairs, while minimizing that of negative pairs
with the InfoNCE loss function [105]:

L = −
N∑
i=1

log
exp (sim(qi, ti)/τ)∑N

k=1 1[k ̸=i] exp (sim(qi, tk)/τ)
, (4.2)

where sim(q, t) measures the similarity between the local image features q and t
computed by the deep model for real image Q and template T , and τ = 0.1, is a
temperature parameter. As shown in Figure 4.4, q and t retain a grid structure and
are 3-tensors. In practice, their dimensions depend on the size of the input image,
ranging from 25× 25× C to 28× 28× C, with C = 16.

Local feature similarity. While previous works on contrastive learning [105, 131,
96, 14, 43, 20, 18, 19] focused mostly on image classification and define the similarity
metric sim(., .) using a global representation of the two images, we found such a
representation to only classify well either known objects or images with a clean
background, as discussed in Section 4.2.1. To effectively handle new objects and
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complex backgrounds, we use a metric based on a pairwise comparison of the local
features in q and t. Specifically, we define

sim(q, t) =
1

|mT |
∑
l

m
(l)
T S

(
q(l), t(l)

)
, (4.3)

where S is a local similarity metric, mT is a 2D binary visibility mask for template
T , and index l indicates a 2D grid location. q(l) and t(l) are thus local features of
dimension C. Considering the template mask allows us to discard the background in
the real image. Note that the mask does not account for possible occlusions in the
real image as it corresponds to the object’s silhouette in the template. Occlusions will
be considered in the next subsection. As a local similarity metric S , we use the cosine
similarity:

S
(
q(l), t(l)

)
=

q(l)

||q(l)||2
· t(l)

||t(l)||2
, (4.4)

We empirically observed that measuring the similarity as the opposite of the L1 and
L2 norms of the differences yields the same performance as the cosine similarity.

4.2.3 Run-time and robustness to occlusions

At run-time, given a real query image Q, we retrieve the most similar template. To be
robust to occlusions that can occur in the query image, we modify sim(q, t) as:

sim∗(q, t) =
1

|mT |
∑
l

m
(l)
T O(l)S

(
q(l), t(l)

)
, (4.5)

where O(l) = 1S(q(l),t(l))>δ with δ a threshold applied to the cosine similarity to “turn
off” the occluded local features as shown in Figure 4.5. In practice, we set this
threshold δ = 0.2 through ablation study. Note that Equation 4.5 can be written as
the element-wise product ⊙ and can be computed efficiently with:

sim∗(q, t) =
1

|mT |
(mT ⊙O ⊙ S) . (4.6)

4.2.4 Template creation

On Linemod [46] and Linemod-Occluded [8] datasets, we follow the protocol of [148]
to sample the synthetic templates. More precisely, the viewpoints are defined by
starting with a regular icosahedron and recursively subdividing each triangle into 4
smaller triangles. After applying this subdivision two times and removing the lower
half-sphere, we end up with 301 templates per object.

On T-LESS [54], we follow the protocol of [127] by using a dense regular icosa-
hedron with 2 562 viewpoints and 36 in-plane rotations for each rendered image.
Altogether, this yields 92 232 templates per object. Besides, we also show our re-
sults with a coarser regular icosahedron with 642 viewpoints, which results 21 672
templates per object. We use BlenderProc [26] to generate templates with realistic
rendering for both settings.
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4.2.5 Projective distance estimation

As done in [128, 127], we estimate 3D translation in the query image from the
retrieved template and the input bounding box as detailed in Section 3.6.2 of [129].
More precisely, given known camera intrinsic of both real sensor KQ and of the
synthetic view KT , we estimate the coordinate of the translation in Z-axis zQ of real
image:

ẑQ = zT × ||BT ||2
||BQ||2

× fQ
fT

(4.7)

where ||B(.)||2 is the diagonal of the bounding box and ||f(.)||2 is the focal length.
Then, we can estimate the vector to transform from the object center in the syn-

thetic image T to the query image Q:

∆t̂ = ẑQK
−1
Q BQ,c − zT K

−1
T BT ,c (4.8)

where B(.),c is the bounding box centers in homogeneous coordinates.
Finally, the 3D translation in the query image t̂Q can be estimated as :

t̂Q = tT +∆t̂ (4.9)

where tT , the translation from camera to object center in the synthetic view T .

4.3 Experiments

In this section, we first describe the experimental setup (Section 4.3.1). Then, we
compare quantitatively and qualitatively our method with previous works [148,
5, 128, 127] on both seen and unseen objects of the Linemod (LM) [46], Linemod-
Occluded (LM-O) [8] and T-LESS [54] datasets (Section 4.3.2). Finally, we provide
an ablation study for investigating the effectiveness of our method with different
parameters and failure cases of our method (Sections 4.3.3 and 4.3.4).

4.3.1 Experimental setup

Data processing. For the LM and LM-O datasets, as there are no standard splits to
evaluate the robustness of RGB-based methods on unseen objects, we propose three
different splits created from the order of the object ids. The new, or unseen objects
for each of these splits are:

• Split #1: Ape, Benchvise, Camera, Can;
• Split #2: Cat, Driller, Duck, Eggbox;
• Split #3: Glue, Holepuncher, Iron, Lamp, Phone.

The other objects from LM are used for training the model. The objects with
names in bold in the lists above often are occluded in LM-O. Note that LM-O is
only used for testing, as we do not need to see occlusions during the training time.
Moreover, to understand the performance gap between objects that are seen or unseen
during the training, we also evaluate the methods on seen objects. To do so, we keep
10% of the real images of training objects under unseen poses for testing purposes.
Table 4.1 details the different splits.

On T-LESS [54], we follow the evaluation protocol of [127] by training only on
objects 1-18 under randomized backgrounds of SUN397 [152] and testing on the
complete T-LESS primesense test set.
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Split Training Seen LM Seen LM-O Unseen LM Unseen LM-O

#1 9 954 981 6 832 4 848 2 377

#2 9 928 981 4 490 4 874 4 719

#3 8 850 872 7 096 6 061 2 113

Table 4.1: Dataset splits for LM and LM-O. For each split, we provide the numbers
of test instances in the training set and in four test sets.

Evaluation metrics. For the LM and LM-O datasets, the pose error is measured by
the angle between the two positions on the viewing half-sphere. We also treat the
“Eggbox" and “Glue" objects as symmetric around the z-axis as done in [148, 5].

In the case of known object pose estimation, the recognition score is almost 100%
on LM and LM-O. Previous works [148, 5] that focused on known objects thus only
evaluate the pose error without considering whether the retrieved object is actually
correct. In the case of unseen objects, we found that retrieving correctly both pose
and class is important as the model can still get correct poses but from another object.
Therefore, we propose using the Acc15 metric, which measures how often the pose
error is less than 15 degrees and the predicted object class is correct.

As most objects in T-LESS [54] are symmetric, we report the recall under the
Visible Surface Discrepancy (errvsd) metric at errvsd < 0.3 with tolerance τ = 20mm
and > 10% object visibility as done in [128, 127]. Unless otherwise stated in previous
works [128, 127], only templates of the same object are used at testing time (in other
words, the class of the object is assumed to be known before testing). Please note that
for the evaluation on the T-LESS dataset, we also predict the translation by using the
same formula “projective distance estimation" of SSD-6D [65] as done in [128, 127].
This translation is deduced from the retrieved template and the input bounding box
of query image as discussed in Section 4.2.5.

Implementation details. For a fair comparison, in the evaluation on LM and
LM-O, we consider two different backbones: (i) “Base” – the simple backbone used
in [148, 5]; (ii) ResNet50 – the standard backbone used in recent contrastive learning
methods [43]. We reimplemented [148, 5] to get quantitative results in both seen and
unseen objects. Our implementations get very similar performance when evaluated
on the same data as the original papers on seen objects (see Table 4.2), validating our
reimplementation.

We also follow [148, 5] when testing with the “Base” backbone by using the same
input image of size 64×64. While testing with ResNet50, we use a larger input size of
224×224. In both settings, we slightly change the architecture by removing all the
pooling, FC layers and then replace them by two 1× 1 convolution layers to output
the desired local feature of size 16. As done in [148, 5], we use the ground-truth
pose to crop the input image at the center of objects and do not consider in-plane
rotation. On the T-LESS dataset, we use the same backbone ResNet50 and crop the
input image with ground-truth bounding box as done in [128, 127].

For both evaluations, we train our networks using Adam with an initial learning
rate of 1e-2 for the “Base” backbone and of 1e-4 for ResNet50. Training takes less
than 5h for all splits on a single V100 GPU when training on LM [46] and around 12h
when training on T-LESS [54].
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Method Backbone Features Loss
Seen LM Seen LM-O Unseen LM Unseen LM-O

#1 #2 #3 Avg. #1 #2 #3 Avg. #1 #2 #3 Avg. #1 #2 #3 Avg.

[148] Base Global [148] 87.0 83.1 85.1 85.0 19.2 23.1 15.0 19.1 13.2 15.5 18.2 15.2 9.3 5.1 5.1 6.5

[148] Base Global InfoNCE 95.2 95.3 95.4 95.3 19.6 25.3 16.1 20.3 13.3 17.0 20.5 16.9 8.2 6.4 6.7 7.1

[5] Base Global [5] 89.2 85.4 83.3 86.3 18.3 21.9 17.6 19.5 14.1 16.3 19.7 16.7 8.2 7.5 7.6 7.8

[5] Base Global InfoNCE 96.3 95.2 96.5 96.0 18.3 23.1 15.8 19.1 11.5 17.7 17.2 15.5 7.1 6.5 6.5 6.7

Ours Base Local [148] 84.8 85.5 86.3 85.5 50.1 51.3 42.2 47.9 69.6 63.2 46.2 59.7 35.3 34.3 44.2 37.9

Ours Base Local InfoNCE 95.6 96.9 92.0 94.8 68.9 71.0 57.7 65.8 78.8 82.5 64.1 75.1 42.2 57.1 59.8 53.0

[148] ResNet Global InfoNCE 98.8 96.9 98.8 98.1 66.7 73.2 62.7 67.5 42.2 43.7 49.4 45.1 22.3 22.5 45.9 29.9

[5] ResNet Global InfoNCE 96.9 97.1 94.5 96.1 63.6 71.8 58.9 64.7 39.9 44.9 48.3 44.3 15.5 21.8 50.2 29.1

Ours ResNet Local InfoNCE 99.3 99.0 99.2 99.1 77.3 84.1 76.8 79.4 94.4 97.4 88.7 93.5 71.4 72.7 85.3 76.3

Table 4.2: Comparison of our method with [148] and [5] on seen and unseen objects
of LM and LM-O under the three different splits detailed at the beginning of Sec-
tion 4.3.1. We report Acc15 ↑, the accuracy of predicting correctly the object identity
and its pose with an error less than 15 degrees. We are on par on the “easy” case
and outperform them by a large margin on the 3 other configurations. Using the
InfoNCE loss rather than the loss from [5] brings some improvement, but the main
improvement comes from our approach based on local features.

4.3.2 Comparison with the state of the art

Results on Linemod and Linemod-Occluded. Table 4.2 presents the results of our
method compared with previous work [148, 5]. With either the “Base” or ResNet50
backbones, our method based on local feature similarities achieves the best overall
performance in almost all settings compared to previous methods that compute the
feature similarity between global image representations. While [148, 5] explored
carefully designed pairwise and triplet losses for learning an embedding space that is
both object-discriminative and pose-discriminative, we find that using the InfoNCE
loss as defined in InfoNCE [105] boosts the performance of all methods, in particular
for our method based on local feature similarities.

When the objects are occluded, the accuracy of [148, 5] drops to below 70% for
training objects, while our method can still maintain a relatively high accuracy. This
shows the robustness of local image features rather than global image representations
that are much more strongly affected by the occlusions. Furthermore, the prediction
accuracy of our method on unseen objects is clearly higher than that of previous
methods, regardless of the objects being occluded or not. This indicates that matching
based on local features is not only robust to occlusions, but also generalizes better to
unseen objects. More importantly, this improvement on unseen objects holds still in
the presence of occlusions.

Results on T-LESS In Table 4.3, we shown that our proposed approach outperforms
the state-of-the-art methods [128, 127] on the T-LESS dataset by a large margin on
both seen and unseen objects. While [127] carefully designed single-encoder-multi-
decoder network that allows sharing a latent space for all objects and having each
decoder only reconstructs views of a single object, we find that using our method
and InfoNCE loss is much more simple but also boosts significantly the performance
in the same setting.

We show in Figure 4.6 our qualitative comparisons with previous methods [5,

58



Method Number
templates

Recall VSD

Obj. 1-18 Obj. 19-30 Average

Implicit [128] 92K 35.60 42.45 38.34

MultiPath [127] 92K 35.25 33.17 34.42

Ours 92K 58.62 58.44 58.54

Ours 21K 59.14 56.91 58.25

Table 4.3: Comparison with [128, 127] on seen objects (obj. 1-18) and unseen objects
(obj. 19-31) of T-LESS using the protocol from [127]. Our method significantly
outperforms [128, 127] in the same setting.

127] on Linemod-Occluded [8] and T-LESS [54] datasets.

Query GT [5] Ours Similarity Query GT [127] Ours Similarity

Figure 4.6: Qualitative results on unseen objects of Linemod-Occluded [8] (left) and
T-LESS [54] (right). Our method retrieves the correct template and pose while [5, 127]
fails on unseen objects, particularly in the presence of occlusion.

4.3.3 Ablation study

We present several ablation evaluations on Linemod [46] and Linemod-Occluded [8].

Effectiveness of feature masking. Table 4.4 shows the effectiveness of using the
template masks M in Equation 4.6 for unseen objects. Removing M results in a
dramatic degradation for our method on all the three splits.

Influence of the threshold δ. Table 4.5 shows the influence of the threshold δ
in Equation 4.5 for estimating the occlusion mask O. Using O brings improvements
on large objects (“Can", “Driller", and “Eggbox"). This can be explained by the fact
that the occlusions can be very large in LM-O, especially on small objects, as shown
in Figure 4.7.

Influence of the local feature dimensions. Figure 4.8 shows the pose error as a
function of the dimension C of the local features and of the resolution of the feature
maps and masks M. While C is not a critical value, the resolution is more important,
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Ape Can Cat Driller Duck Egg∗ Glue∗ Hole. Avg

[148] 16.6 28.0 1.5 8.2 11.5 68.8 67.7 22.1 29.9

[5] 12.6 18.4 9.0 16.7 7.8 53.7 60.3 40.1 29.1

Ours 53.8 89.7 45.1 84.4 87.2 76.9 89.9 83.3 76.3

w/o M 13.3 1.0 10.0 1.0 80.1 7.0 80.0 1.0 24.1

Table 4.4: Effectiveness of M. Comparison of [148, 5] and our method with and
without using the template mask M in the computation of the similarity. Using M
allows discarding the cluttered background and brings significant improvement on
occluded unseen objects.

Threshold δ -0.3 -0.2 -0.1 0 0.1 0.2 0.3 w/o O

Ape 54.1 53.7 54.6 54.7 54.0 53.8 53.6 53.3

Can 82.2 89.2 89.1 89.7 89.4 89.7 89.8 84.9

Cat 46.7 47.5 46.1 45.5 46.1 45.1 46.5 45.1

Driller 83.6 84.5 84.5 83.8 84.4 84.4 84.5 81.5

Duck 87.1 87.1 87.8 86.7 87.3 87.2 87.0 87.3

Egg∗ 76.3 75.2 74.1 75.3 75.1 76.9 76.2 72.6

Glue∗ 89.3 83.5 83.9 90.1 89.5 89.9 89.6 90.2

Holep. 83.9 85.9 83.6 82.9 83.4 83.3 82.5 81.8

Avg 75.4 75.8 75.4 76.0 76.1 76.3 76.2 74.5

Table 4.5: Influence of threshold δ of Equation 4.5. Predicting occlusion mask O
with threshold δ = 0.2 results on the best performance, particularly on large objects.

Figure 4.7: The “Cat" object is often barely visible in the test images of Linemod-
Occluded, resulting in large errors.

Dataset Number
templates

Features
creation

Memory
Run-time

CPU GPU

Linemod 1.204 0.5 min 28 MB 0.15 s 7.8×10−3 s

T-LESS 21.672 6 min 544 MB 0.84 s 8.2×10−3 s

Table 4.6: Average run-time of our method on a single GPU V100 and CPU Intel
Xeon.

as higher resolution allows discarding the background more precisely. Furthermore,
this hyperparameter has a much stronger influence on the performance on the unseen
objects compared to the seen objects.
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Figure 4.8: Influence of the local feature dimension C and of the resolution of the
local features and masks. Using a good resolution is much more important than
using high-dimensional local features as this allows discarding background more
precisely when computing the similarity score.

Run-time. Table 4.6 provides run-times on CPU and GPU.

4.3.4 Failure cases

When evaluated on Linemod-Occluded, both our method and [148, 5] fail on the
“Cat" object. As shown in Figure 4.7, this object is small and particularly heavily
occluded in this dataset.

4.4 Conclusion

In this chapter, we have presented an efficient approach to 3D object recognition and
pose estimation that can generalize to new objects without the need for retraining
and that is robust to occlusions. Our analysis has shown that a global representation,
which discards the grid structure of images, is not robust to clutter and results in
inaccurate pose predictions. Our method, based on local representations, has much
better properties and can be made robust to occlusions. We hope that our analysis
and our new approach will guide the development of more practical systems.
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Chapter 5

GigaPose: Fast and Robust Novel
Object Pose Estimation via One
Correspondence

Ground-truth MegaPose [72] GigaPose Reconstruction MegaPose [72] GigaPose
& Segmentation (1.68 s / detection) (0.048 s / detection) & Segmentation (1.68 s / detection) (0.048 s / detection)

Using ground-truth 3D models Using 3D models predicted from a single image

Figure 5.1: Comparison of our method GigaPose with MegaPose [72]. GigaPose
is (i) more robust to noisy segmentation, often due to occlusions, (ii) more accurate
with 3.5 % average precision improvement on the BOP benchmark [51], and (iii)
significantly faster with a speed up factor of 35× per detection for coarse object pose
estimation stage (0.048 s vs 1.68 s). Left example compares the results using accurate
3D models, while the right example shows the results with 3D models predicted from
a single image by Wonder3D [84]. The bottom row shows the input segmentation,
and the depth error heatmap of each detected object with respect to the ground truth
pose, i.e the distance between each 3D point in the ground-truth depth map and its
position with the predicted pose (legend: 0 cm 10 cm).

The work presented in this chapter was initially presented in:

[103] Van Nguyen Nguyen, Thibault Groueix, Mathieu Salzmann, Vincent Lepetit.
GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence.
Computer Vision and Pattern Recognition (CVPR), 2024.
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As discussed in Section 2, most of current pose estimation approaches involve
two main steps: object detection and segmentation, pose estimation including coarse
pose estimation, and refinement. While object detection and segmentation has been
recently addressed by CNOS [102], introduced in Chapter 3, refinement has been
also addressed effectively with render-and-compare approaches [72, 133]. However,
existing solutions to coarse pose estimation still suffer from low inference speed and
sensitivity to segmentation errors. We thus focus on this step in this chapter.

The low inference speed stems from how existing coarse pose estimation methods
rely on templates [104, 159, 72]. Among them, MegaPose [72] has been widely
adopted and integrated into various pipelines, notably the BOP challenge-winner
GenFlow [97]. However, the complexity of MegaPose is linear in the number of
templates, as it matches the input images against the templates by running a network
on each image-template pair. As a result, the methods based on MegaPose require
more than 1.6 seconds per detection.

Sensitivity to detection and segmentation errors, often due to occlusions, is a
common issue for template-based approaches [104, 72]. As illustrated in Figure 5.1,
the segmentation of occluded objects such as the “duck” (left example), results
in a scale and translation mismatch when cropping the test image and templates.
Additionally, the erroneous segments may include noisy signal from the other objects
or the background, which results in numerous outlier matches between the input
image and the templates.

To address these two major limitations, in this chapter, we introduce GigaPose,
a novel approach for CAD-based coarse object pose estimation. GigaPose makes
several technical contributions towards speed and robustness and can be seamlessly
integrated with any refinement method for CAD-based novel object pose estimation
to achieve state-of-the-art accuracy.

The key idea in GigaPose is to find the right trade-off between the use of templates,
which have been shown to be extremely useful for estimating the pose of novel objects,
and patch correspondences, which lead to better robustness and more accurate
pose estimates. More precisely, we propose to rely on templates to estimate two
degrees of freedom (DoFs)—azimuth and elevation—as varying these angles changes
the appearance of an object in complex ways, which templates excel at capturing
effectively. Our templates are represented with local features that are trained to be
robust to scaling and in-plane rotations. Matching the input image with the templates
based on these local features yields robustness to segmentation errors.

To estimate the remaining 4 DoFs—in-plane rotation and 3D translation decom-
posed into 2D translation and 2D scale, we rely on patch correspondences between
the input image and the template candidates. Given a template candidate, we match
its local features with those of the input image, which gives us 2D-2D point corre-
spondences. Instead of simply exploiting the matched point coordinates and use a
PnP algorithm [98] to estimate the pose as done in previous works [115, 58, 59], we
also exploit their appearances: We show that it is possible to predict the in-plane
rotation and relative scale between the input image and the template from local
features computed at the matched points. The remaining 2D translation is obtained
from the positions of these matched points, allowing the estimation of the four DoFs
from a single correspondence. To robustify this estimate, we combine this process
with RANSAC.

We experimentally demonstrate that our balance between the use of templates
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Figure 5.2: Overview. We first onboard each novel object by rendering 162 templates,
spanning the spectrum of out-of-plane rotations. We also extract dense features using
Fae from each of the templates. At runtime, given a query image segmented with
CNOS [102], we process it (by masking the background, cropping on the segment,
adding padding then resizing), and extracting features with Fae. We retrieve the
nearest template to the segment using the similarity metric detailed in Section 5.1.3.
Further, 2D scale and in-plane rotation are computed from a single 2D-2D correspon-
dence using Fist and two lightweight MLPs. The 2D position of the correspondences
also gives us the 2D translation which is used with 2D scale, in-plane rotation to cre-
ate the affine transformation Mt→q, mapping the nearest template to the query image.
This enables us to recover the complete 6D object pose from a single correspondence.
Finally, we use RANSAC to robustly find the best pose candidate. Onboarding takes
11.5 seconds per object and inference takes 48 milliseconds per detection on average.

and patch correspondences effectively addresses the two issues in coarse pose esti-
mation. Indeed, our method relies on a sublinear nearest-neighbor template search,
successfully addressing the low inference speed issue with a speedup factor of 35×
per detection compared to to MegaPose [72]. Furthermore, the two steps of our
method are particularly robust to segmentation errors.

We also demonstrate that GigaPose can exploit a 3D model reconstructed from
a single image by a diffusion-based model [84, 82, 80, 114, 112, 142] instead of an
accurate CAD model. Despite the inaccuracies of the predicted 3D models, our
method can recover an accurate 6D pose as shown on Figure 5.1. This relaxes the
need for CAD models and makes 6D pose object detection much more convenient.

5.1 Method

Figure 5.3 provides an overview of GigaPose. Given the 3D model of an object
of interest, we render templates and extract their dense features using a Vision-
Transformer (ViT) model Fae. Then, given an input image, we detect the object of
interest and segment it using an off-the-shelf method CNOS [102]. GigaPose extracts
dense features from the input image at the object location using Fae again. We select
the template most similar to the input image using a similarity metric based on the
dense features, detailed in Section 5.1.3. This gives us the azimuth and elevation of
the camera.

To estimate the remaining DoFs, we look for corresponding patches between
the input image and its most similar template. From one such pair of patches, we
can directly predict two additional DoFs: the 2D scale s and the in-plane rotation
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Figure 5.3: Contrastive training of Fae. We use pairs made of a query image and a
template to train a network using local contrastive learning as detailed in Section 5.1.3.
Middle: Training samples provided by [72], and the 2D-2D correspondences created
from ground-truth 3D information used to generate positive and negative pairs.
Right: We seek local features that vary with the out-of-plane rotation, but are invariant
to in-plane rotation and scaling. Thus, positive pairs are made of corresponding
patches under scaling and in-plane rotation changes, and negative pairs are made of
corresponding patches under different out-of-plane rotations, patches that do not
correspond, or that come from different objects.

α, by feeding two lightweight MLPs the features for the two patches extracted by
another feature extractor denoted as Fist. Note that the features extracted by Fae are
not suitable here, as they discard information about scale and in-plane rotation by
design. The image locations of the corresponding patches also give us directly the
last two DoFs: the 2D translation (tx, ty). From the scale and 2D translation, we can
estimate the 3D translation. We use a RANSAC framework and iterate over different
pairs of patches to find the optimal pose. We detail the training of Fist and the MLPs,
and the RANSAC scheme in Section 5.1.4.

5.1.1 Generating templates

In contrast to other approaches [104, 159], we do not generate templates for both
in-plane and out-of-plane rotations, as this yields thousands of templates. Instead,
we decouple the 6 DoFs object pose into out-of-plane rotation, in-plane rotation, and
3D translation (2D translation and scale). Given the out-of-plane rotation, finding the
scale and in-place rotation is indeed a 2D problem only. We thus create much less
templates and push the estimation of the other DoFs to a later stage in the pipeline
(see Section 5.1.4). In practice, we use 162 templates. These are generated from
viewpoints defined in a regular icosphere which is created by subdividing each
triangle of the icosphere primitive of Blender into four smaller triangles. This has
been shown in previous works [102, 3, 104] to provide well-distributed view coverage
of CAD models.

5.1.2 Generating ground-truth 2D-to-2D correspondences

We use the training sets provided by the BOP challenge [51], originally sourced from
MegaPose [72] to create the 2D-to-2D correspondences for training. These datasets
consist of 2 million images and are generated from CAD models of Google Scanned
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Objects [28] and ShapeNet [16] using BlenderProc [26].
For each 2D location i—the 2D center for a patch of size 14×14 of the query

image—we aim to identify its corresponding location i∗ in the nearest template. We
achieve this through a straightforward re-projection process. For each 2D center in
the query image, we first calculate its 3D counterpart using the query depth map
and camera intrinsics. We then transform this 3D point into the camera view of the
nearest template using the ground-truth relative pose, and re-project this 3D point
into the template using template camera intrinsics. If the re-projected 2D location
falls inside the template mask, we identify the nearest patch i∗ among all patches
within the template mask, as the corresponding location for the input query patch
i. We reverse the roles of the query and the template, then use the same process to
establish 2D-to-2D correspondences for each patch of the template.

Additionally, since our goal is to close the domain gap between real images
and synthetic renderings, we apply color augmentation including: Gaussian blur,
contrast, brightness, colors and sharpness filters from the Pillow library [24] along
with random cropping and in-plane rotation to the input pairs . We show typical
training samples in the middle part of Figure 5.3.

5.1.3 Predicting azimuth and elevation

Training the feature extractor Fae. Fae extracts dense features from both the input
image and each of the templates independently. Compared to estimating features
jointly, this approach eliminates the need for extensive feature extraction at runtime,
a process that scales linearly with the number of templates and in-plane rotations
considered. Instead, we can offload the computation of the features for each template
to an onboarding stage for each novel object. We now describe how we train the
feature extractor Fae and how we design the similarity metric to compare the template
and query features.

The extracted features aim to match a query image to a set of templates with dif-
ferent out-of-plane rotations, but with fixed scale, in-plane rotation, and translation.
The features should thus be invariant to scale, in-plane rotation, and 2D translation,
but be sensitive to out-of-plane rotation.

We achieve this with a local contrastive learning scheme. The main difficulty lies
in defining the positive and negative patch pairs. Figure 5.3 illustrates our training
procedure. We construct batches of B image pairs (Qk, Tk), such that the query Qk

is a rendering of a 3D object in any pose, and the template Tk is another rendering
of that object with the same out-of-plane rotation but different in-plane rotation,
scale, and 2D translation. Because we have access to the ground-truth 2D-to-2D
correspondences as detailed in Section 5.1.2, we can create positive and negative
pairs for the training.

We pass each image Qk and Tk independently through Fae to extract dense feature
maps qk and tk. Below, we use the superscript i to denote a 2D location in the local
feature map. Note that because of the downsizing done by the ViT, each location i in
the feature grid corresponds to a 14×14 patch in the respective input image. Each
feature map has a respective segmentation mask mQk

and mTk corresponding to the
foreground of the object in the images Qk and Tk.

For a location i in the query feature map qk, we denote by i∗ the corresponding
location in the template feature map. We arrange the query patches (qi

k) and their

67



corresponding patch (ti
∗

k ) in a square matrix such that the diagonal contains the
positive pairs, and all other entries serve as negative pairs. For each pair (Qk, Tk), we
thus obtain |mQk

| positive pairs and |mQk
| · (|mQk

| − 1) negative pairs.
To improve the efficiency of contrastive learning, we use additional negative pairs

from a query image Qk and a template Tk′ , where k′ ̸= k in the current batch. This

process results in total in
(∑B

k=1 |mQk
|
)2

−
∑B

k=1 |mQk
| negative pairs for the current

batch. We train Fae to align the representations of the positive pairs while separating
the negative pairs using the InfoNCE loss [105]:

Lout = −
B∑

k=1

|mQk
|∑

i=1

ln
eS(q

i
k,t

i∗
k )/τ∑

(k′,i′ )̸=(k,i∗) e
S(qi

k,t
i′
k′ )/τ

, (5.1)

where S(., .) is the cosine similarity between the local image features computed
by the network Fae. The temperature parameter τ is set to 0.1 in our experiments.

Since the positive pairs of patches have different scales and in-plane rotations,
our network Fae learns to become invariant to these two factors, as demonstrated in
our experiments. We initialize our feature extractor Fae as DINOv2 [106] pretrained
on ImageNet, because it has proven to be highly effective in extracting features for
vision tasks.

Azimuth and elevation prediction. We define a pairwise similarity metric for each
query-template (Q, T ) pair with their respective dense feature grid (q, t) and feature
segmentation masks (mQ,mT ).

For each local query feature qi, corresponding to patch at location i, we compute
its nearest neighbor in the template features t, denoted as timax , as

imax = argmax
j|mj

T >0

S
(
qi, tj

)
. (5.2)

where j|mj
T > 0 refers to a subset of indices j for which mj

T > 0.
This nearest neighbor search yields a list of correspondences {(i, imax)}. To im-

prove the robustness of our method against outliers, we keep only the correspon-
dences {(i, imax)} having a similarity score ≥ 0.5. The final similarity for this (Q, T )
pair is defined as the mean of all the remaining correspondences, weighted by their
similarity score:

sim(q, t) =
1

|mQ|
∑
i

mi
QS
(
qi, timax

)
. (5.3)

We compute this score for all templates Tk (1 ≤ k ≤ 162) and find the top-K candi-
dates yielding the most similar out-of-plane rotations. This nearest neighbor search is
very fast and delivers results within 48 milliseconds. In practice, we experiment with
K = 1 and K = 5. For the latter, the final template is selected by the RANSAC-based
estimation detailed in Section 5.1.4 below.

5.1.4 Predicting the remaining DoFs

Once we have identified the template candidates, we seek to estimate the remaining
4 DoFs, i.e., in-plane rotation, scale, and 2D translation, which yield the affine
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transformation Mt→q transforming each template candidate T to the query image Q.
Specifically, we have

Mt→q =

[
s cos(α) −s sin(α) tx
s sin(α) s cos(α) ty

0 0 1

]
, (5.4)

where s is the 2D scaling factor, α is the relative in-plane rotation, and [tx, ty] is the
2D translation between the input query image Q and the template T .

Training the feature extractor Fist and the MLP. We have already obtained from
the features of Fae a list of 2D-2D correspondences {(i, imax)}. Each correspondence
can inherently provide 2D translation [tx, ty] information through the patch locations
i and imax. To recover the remaining 2 DoFs, scale s and in-plane rotation α, we train
deep networks to directly regress these values from a single 2D-2D correspondence.
Since the feature extractor Fae is invariant to in-plane rotation and scaling, the cor-
responding features cannot be used to regress those values, hence we have to train
another feature extractor we call Fist. Given a 2D-2D match from a pair (Q, T ), and
their corresponding feature computed by Fist, we pass them through two small MLPs,
which outputs directly α and s. This enables us to predict 2D scale and in-plane
rotations for each 2D-2D correspondence. To address the 2π periodicity of in-plane
rotation, we predict

[
cos(αl

k), sin(α
l
k)
]

instead of αl
k.

We train jointly both Fist and the MLPs on the same data samples as Fae using the
loss:

Linp =
B∑

k=1

nk∑
i=1

[(
ln(sik)− ln(s∗k)

)2
+ geo(αi

k, α
∗
k)
]
, (5.5)

where s∗k and α∗
k are the ground-truth scale and in-plane rotation between Q and Tk,

and geo(·, ·) indicates the geodesic loss defined as

geo(α1, α2) = acos
(
cos(α1)cos(α2) + sin(α1)sin(α2)

)
. (5.6)

RANSAC-based Mt→q estimation. For each template T , we employ RANSAC
on each Mt→q predicted by each correspondence and validate them against the
remaining correspondences using a 2D error threshold of δ. In practice, we set δ to
the size of a patch, corresponding to an error of 14 pixels in image space. The final
prediction for Mt→q is determined by the correspondence with the highest number
of inliers. The complete 6D object pose can finally be recovered from the out-of-plane
rotation, in-plane rotation, 2D scale and 2D translation.

We initialize Fist with a modified version of ResNet18 [45] instead of the DINOv2
[106] as DINOv2 is trained with random augmentations that includes in-plane ro-
tations and cropping, making its features invariant to scale and in-plane rotation.
Similarly to the features from Fae, we offload the feature computation of Fist to the
onboarding stage for all templates to avoid the computational burden at runtime.

5.2 Experiments

In this section, we first describe our experimental setup (Section 5.2.1). Next, we
compare our method with previous works [72, 3, 123] on the seven core datasets of
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the BOP challenge [51] (Section 5.2.2). We conduct this comparison to evaluate our
method’s accuracy, runtime performance, and robustness to segmentation errors,
highlighting our contributions. Finally, we present an ablation study that explores
different settings of our method (Section 5.2.3).

5.2.1 Experimental setup

Evaluation Datasets. We evaluate our method on the seven core datasets of the BOP
challenge [51]: Occluded-Linemod (LM-O) [8], T-LESS [54], TUD-L [50], IC-BIN [27],
ITODD [30], HomebrewedDB (HB) [64] and YCB-Video (YCB-V) [150]. These datasets
consist of a total of 132 different objects and 19 048 testing instances, presented in
cluttered scenes under partial occlusions. It is worth noting that, in contrast to the
seen object setting, the novel object pose estimation setting is far from being saturated
in terms of both accuracy and run-time.

Evaluation metrics. For all experiments, we use the standard BOP evaluation proto-
col [56], which relies on three metrics: Visible Surface Discrepancy (VSD), Maximum
Symmetry-Aware Surface Distance (MSSD), and Maximum Symmetry-Aware Pro-
jection Distance (MSPD). The final score, referred to as the average recall (AR), is
calculated by averaging the individual average recall scores of these three metrics
across a range of error thresholds.

Baselines. We compare our method with MegaPose [72], ZS6D [3], and OSOP [123].
As of the time of writing, the source codes for ZS6D and OSOP are not available.
Therefore, we can only report their performance as provided in their papers, but not
their run-time.

Refinement. To demonstrate the potential of GigaPose, we have applied the refine-
ment methods from MegaPose [72] and GenFlow [97] to our results. We extract the
top-1 and the top-5 pose candidates and subsequently refine them using 5 iterations
of MegaPose’s refinement network [72] or GenFlow’s refinement network [97]. For
the top-5 hypotheses case, these refined hypotheses are scored by the coarse network
of MegaPose [72], and the best one is selected.

Pose estimation with a 3D model predicted from a single image. We use Won-
der3D [84] to predict a 3D model from a single image for objects from LM-O. We then
evaluate the performance of MegaPose and our method using reconstructed models
instead of the accurate CAD models provided by the dataset. Due to the sensitivity
of Wonder3D to the quality of input images, we carefully select reference images.

Implementation details. We use the input image of size 224 ×224, resulting in fea-
tures of size 16×16×1024 and 16×16×256 via the networks Fae and Fist respectively.
We train our networks using the Adam optimizer with an initial learning rate of 1e-5
for Fae and 1e-3 for Fist. The training process takes less than 10 hours when using
four V100 GPUs. All the inference experiments are run on a single V100 GPU.
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Method Detections Refinement
LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V

MEAN RUN-TIMEN. instances: 1445 6423 600 1786 3041 1630 4123

1 OSOP [123] OSOP [123] – 27.4 40.3 – – – – 29.6 – –
2 MegaPose [72] Mask R-CNN [44] – 18.7 19.7 20.5 15.3 8.00 18.6 13.9 16.2 –

3 ZS6D [3] CNOS [102] – 29.8 21.0 – – – – 32.4 – –
4 MegaPose [72] CNOS [102] – 22.9 17.7 25.8 15.2 10.8 25.1 28.1 20.8 15.5 s
5 GigaPose CNOS [102] – 29.6 26.4 30.0 22.3 17.5 34.1 27.8 26.8 0.4 s

6 MegaPose [72] CNOS [102] MegaPose [72] 49.9 47.7 65.3 36.7 31.5 65.4 60.1 50.9 17.0 s
7 GigaPose CNOS [102] MegaPose [72] 55.7 54.1 58.0 45.0 37.6 69.3 63.2 54.7 2.3 s

8 MegaPose [72] CNOS [102] MegaPose + 5 Hypo. [72] 56.0 50.7 68.4 41.4 33.8 70.4 62.1 54.7 21.9 s
9 GigaPose CNOS [102] MegaPose + 5 Hypo. [72] 59.8 56.5 63.1 47.3 39.7 72.2 66.1 57.8 7.7 s

10 MegaPose [72] CNOS [102] GenFlow + 5 Hypo. [97] 56.3 52.3 68.4 45.3 39.5 73.9 63.3 57.0 20.8 s
11 GigaPose CNOS [102] GenFlow + 5 Hypo. [97] 63.1 58.2 66.4 49.8 45.3 75.6 65.2 60.5 10.6 s

Table 5.1: Results on the BOP datasets. We report the AR score on each of the seven
core datasets of the BOP challenge and the mean score across datasets. The best
results with CNOS’s detections [102] without refinement are highlighted in blue,
with MegaPose’s refinement using 1 hypothesis in yellow, and using 5 hypotheses in
orange, and with GenFlow’s refinement using 5 hypotheses in red.

5.2.2 Comparison with the state of the art

coarse pose estimation after refinement

Figure 5.4: Qualitative results on LM-O [8]. The first column shows the ground-
truth and CNOS [102] segmentation. The second and third columns show the results
without refinement for both MegaPose [72] and our method, including depth error
heatmaps at the bottom. The last two columns compare the results using the same
refinement [72] for MegaPose [72] and our method. In the error heatmap, darker red
indicates higher error with respect to the ground truth pose (legend: 0 cm
10 cm). As demonstrated in this figure, our method estimates a more accurate
coarse pose and avoids local minima during refinement, such as with the white
“watering_can” object from LM-O.

Accuracy. Table 5.1 compares the results of our method with those of previous
work [72, 3, 123]. Across all settings, whether with or without refinement, our method
consistently outperforms MegaPose while maintaining significantly faster processing
times. Notably, our method significantly improves accuracy on the challenging T-
LESS, IC-BIN, and ITODD, with more than a 5% increase in AR score for coarse pose
estimation and more than a 4% increase in AR score after refinement compared to
MegaPose.

It is important to note that although the coarse and refinement networks in
MegaPose [72] are not trained together, they were trained to work together: As
mentioned in Section 3.2 of [72], the positive samples of the coarse network “are
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Figure 5.5: Qualitative results on YCB-V [150]. The first column shows CNOS [102]’s
segmentation. The second and third columns illustrate the outputs of the nearest
neighbor search step, which includes the nearest template (Rae) and the 2D-to-
2D correspondences. The fourth column demonstrates the alignment achieved by
applying the predicted affine transform Mt→q to the template, then overlaying it on
the query input: The green contour indicates the noisy segmentation by CNOS [102],
while the red contour highlights the boundary of the aligned template. The last
column show the final prediction after refinement [72].

sampled from the same distribution used to generate the perturbed poses the refiner network is
trained to correct”. This pose sampling biases MegaPose’s refinement process towards
MegaPose’s coarse estimation errors. This explains why the refinement process brings
larger improvements to MegaPose than GigaPose, in particular on TUD-L where the
refinement improves MegaPose by 39.5% and our method only by 28.0%. However,
TUD-L represents only about 3% of the total test data, our method still outperforms
MegaPose over the 7 datasets in all settings.

Figure 5.4 shows qualitative comparisons with MegaPose [72] before and after
refinement on LM-O dataset [46] showcasing our more accurate pose estimates.
Figure 5.5 shows qualitative results of each step of GigaPose on YCB-V dataset [150].

Accuracy when using predicted 3D models. As shown in Table 5.2, our method
outperforms MegaPose when using predicted 3D models. Results in Table 5.2 implies
that when no CAD model is available for an object, we can use Wonder3D to predict
a 3D model from a single image, then apply GigaPose and MegaPose refinement.
These results are close to GigaPose’s performance and surpass MegaPose’s coarse
performance when using an accurate CAD model.
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Figure 5.6: 3D reconstruction by Wonder3D [84]. The first row displays the input
reference image, the second shows the predicted normal maps from the view opposite
to the reference image.

Method Detection [102] Single image GT 3D model
w/o refinementCoarse Refined

1 MegaPose [72] GT 3D model 16.3 25.6 22.9
2 GigaPose (ours) GT 3D model 18.3 27.9 29.6
3 MegaPose [72] Single image 15.4 25.2 22.7
4 GigaPose (ours) Single image 17.6 27.2 29.4

Table 5.2: Results with predicted 3D models on LM-O [8]. We report AR score
using 3D models predicted from a single reference image by Wonder3D [84]. The
3D reconstruction is shown in Figure 5.6. Rows 3 and 4 display additional results for
MegaPose and our method, where CNOS [102] is also given 3D predicted models.

Run-time. We report the speed of GigaPose in Table 5.1 (rightmost column) fol-
lowing the BOP evaluation protocol. It measures the total processing time per image
averaged over the datasets including the time taken by CNOS [102] to segment each
object, the time to estimate the object pose for all detections, and the refinement time
if applicable.

Table 5.3 gives a breakdown of the run-time per detection for each stage of Mega-
Pose and of our method. Our method takes only 48 ms for coarse pose estimation,
more than 38x faster than the 1.68 seconds taken by MegaPose. This improvement
can be attributed to our sublinear nearest neighbor search, significantly faster than
feed-forwarding each of the 576 input-template pairs as done in MegaPose.

Robustness to segmentation errors. To demonstrate the robustness of our method,
we analyze its performance under various levels of segmentation errors on three
standard datasets: LM-O [8], T-LESS [54], and YCB-V [150]. We use the ground-truth
masks to classify the segmentation errors produced by CNOS’s segmentation [102]
using the Intersection over Union (IoU) metric. For each IoU threshold, we retain
only the input masks from CNOS that matched the ground-truth masks with an IoU
smaller than this threshold and evaluate the AR score for coarse pose estimation.

As shown in Figure 5.7, our method has a stable AR score across all IoU thresholds
for both T-LESS and YCB-V, in contrast with MegaPose, which yields high scores
primarily for high IoU thresholds only.
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Method
Run-time

Onboarding Coarse pose Refinement [72]
MegaPose [72] 0.82 s 1.68 s 33 ms
GigaPose (ours) 11.5 s 48 ms 33 ms

Table 5.3: Run-time. Breakdown of the average run-time for each stage of Mega-
Pose [72] and our method on a single V100 GPU to estimate the pose per object (i.e.,
per detection). Our method is more than 35× faster than MegaPose for coarse pose
estimation.

T-LESS YCB-V LM-O

MegaPose Ours
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Figure 5.7: Robustness to segmentation errors. We analyze the performance of
MegaPose and our method under various levels of segmentation errors, defined by
the IoU between the predicted masks from CNOS [102] and the ground-truth masks.
Our method demonstrates much higher stability in AP across all IoU thresholds than
MegaPose, showing its robustness against segmentation errors. The improvement is
more limited on LM-O because of the small appearance size of the objects especially
after occlusions.

5.2.3 Ablation study

In Table 5.4, we present several ablation evaluations on the three standard datasets
LM-O [8], T-LESS [54], and YCB-V [150]. Our results are in Row 5 .

Fine-tuning Fae. Row 1 of Table 5.4 presents the results of using the DINOv2
features [106] without fine-tuning Fae. As shown in Row 5, fine-tuning significantly
improves template-correspondences, leading to a 8.9% increase in AR score.

Estimating in-plane rotation with templates. Row 2 of Table 5.4 shows in-plane
rotation estimation results using templates by dividing in-plane angle into 36 bins of
10 degrees, yielding 5832 templates per object. This approach decreases the AR score
by 5.8% compared to direct predictions with Fist and H in Row 5, underscoring the
effectiveness of our hybrid template-patch correspondence approach.
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Fine tune
Fae

Templates
in-plane

PnP
LM-O T-LESS YCB-V MEANType n

1 ✗ ✗ 2D-to-2D 1 20.1 19.3 17.7 19.0
2 ✓ ✓ 2D-to-2D 1 23.3 21.1 22.1 22.1
3 ✓ ✗ 3D-to-2D 4 28.0 25.3 26.3 26.5
4 ✓ ✗ 2D-to-2D 2 30.0 25.6 26.0 27.2
5 ✓ ✗ 2D-to-2D 1 29.6 26.4 27.8 27.9
6 ✓ ✗ 2D-to-2D 1 30.1 27.1 28.4 28.5

Table 5.4: Ablation study. We report the AR score of different settings of our method
including: without fine-tuning Fae in Row 1, estimating in-plane rotation with dense
3DoF templates in Row 2, different “PnP” variants in Rows 3 and 4. The results of
the complete method are on Row 5 . We show in Row 6 our results using the same
576 templates as in MegaPose [72]. See Section 5.2.3.

2D-to-2D vs 3D-to-2D correspondences. In Row 3, we introduce a “3D-to-2D
correspondence” variant by replacing the 2D locations of the matched patches in the
template with their 3D counterparts obtained from the template depth map. We then
estimate the complete 6D object pose using the ePnP algorithm [75] implemented in
OpenCV [9]. Furthermore, in Row 4, we present a two-“2D-to-2D correspondences”
variant, where the scale and in-plane rotation are computed using a 2D variant of the
Kabsch algorithm. Our single-correspondence approach in Row 5 is more effective at
exploiting patch correspondences for estimating scale and in-plane rotation directly.

Number of templates. In Row 6, we present our results using the same 576 tem-
plates as MegaPose [72]. This improves by only 0.6% the AR score compared to
using 162 templates (Row 5). This confirms that the correspondences also allows to
decrease the memory footprint of the templates without hurting the accuracy.

5.3 Conclusion

As discussed in Section 5.2.2, GigaPose fails on challenging conditions where heavy
occlusions, low-resolution segmentation, and low-fidelity CAD models are present,
as observed in the LM-O dataset. To address this issue, incorporating additional
modalities, such as depth images, can be beneficial. Depth images, which capture
information about object geometries, can significantly enhance model performance
under these conditions. Moreover, although our method shows promising results in a
single-reference setting using Wonder3D [84], it requires manual selection to achieve
high-quality 3D reconstruction. Therefore, the development of more advanced 3D
reconstruction techniques capable of generating high-quality outputs from a single
image would be particularly valuable in this context.

In this chapter, we presented GigaPose, an efficient method for the 6D coarse
pose estimation of novel objects. It stands out for its significant speed, robustness,
and accuracy compared to existing methods, and can be seamlessly integrated with
any refinement methods. We hope that GigaPose will make real-time accurate pose
estimation of novel objects practical.
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Chapter 6

NOPE: Novel Object Pose Estimation
from a Single Image

Reference Query
Predicted

pose
Pose

distribution Reference Query
Predicted

pose
Pose

distribution

Figure 6.1: Given as input a single reference view of a novel object, our method
predicts the relative 3D pose (rotation) of a query view and its ambiguities. We
visualize the predicted pose by rendering the object from this pose, but the 3D
model is only used for visualization purposes, not as input to our method. Our
method works by estimating a probability distribution over the space of 3D poses,
visualized here on a sphere centered on the object. We use the canonical pose of the
3D model to visualize this distribution, but not as input to our method. From this
distribution, we can also identify the pose ambiguities: For example, in the case of
the bottle, any pose with the same pitch and roll is possible; in the case of the mug,
a range of poses are possible as the handle is not visible in the query image. Our
method is also robust to partial occlusions, as shown on the clock hidden in part by a
rectangle in the query image.

The work presented in this chapter was initially presented in:

[101] Van Nguyen Nguyen, Thibault Groueix, Georgy Ponimatkin, Yinlin Hu, Re-
naud Marlet, Mathieu Salzmann, Vincent Lepetit. NOPE: Novel Object Pose Esti-
mation from a Single Image. Computer Vision and Pattern Recognition (CVPR),
2024.
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Reference Query
Generated view
from the query

ground-truth pose

Recovered pose by
template matching

Estimated
pose distribution

Figure 6.2: The limit of novel view synthesis for pose prediction. While the images
generated by Wonder3D [84] look very realistic, they have to invent unseen parts,
impairing the similarity computation between the query image and the generated
view, and hence the pose estimation: The probability distributions computed by
template matching do not peak on the right pose but show many wrong local maxima.
This is not a limitation of Wonder3D but of view synthesis from a single view in
general.

In this chapter, we introduce an approach, which we call NOPE for Novel Object
Pose Estimation, that only requires a single image of the new object to predict the
relative pose of this object in any new images, without the need for the object’s 3D
model and without training on the new object. This is a very challenging task, as, by
contrast with the multiple views used in [126, 158] for example, a single view only
provides limited information about the object’s geometry.

To achieve this, we train NOPE to predict the appearance of the object under novel
views. We use these predictions as ‘templates’ annotated with the corresponding
poses. Matching these templates with new input views lets us estimate the object
relative pose with respect to the initial view. This approach is motivated by the
good performance of recent related work [104, 123]. In particular, [104] showed
that template matching can be extremely fast and robust to partial occlusions. This
contrasts with methods that rely on a deep network to predict the probability of a
pose [158].

Since our method relies on predicting the appearance of the target object, it
relates to recent developments in novel view synthesis. However, it has two critical
differences: The first difference is that instead of predicting color images, we directly
predict discriminative embeddings of the views. These embeddings are extracted by
passing the input image through a U-Net architecture with attention and conditioned
on the desired pose for the new view.

The second main difference of our approach with novel view synthesis is more
fundamental. We first note that generating novel views given a single view of an
object is ambiguous. Novel view synthesis usually focuses on generating a single
possible image for a given point of view. This is however not suitable for our purpose:
The view synthesis method will “invent” the parts that were not visible in the input
view. As illustrated in Figure 6.2, these invented parts create a plausible novel view
but there is no guarantee this view actually corresponds to the actual view. For
our goal of pose estimation, the invented parts will not match in general the query
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view and this will result in incorrect pose estimation. The limitations of using novel
view synthesis for pose estimation will further be quantitatively demonstrated in our
experiments (see Table 6.1).

Our approach to handling the ambiguities in novel view synthesis for template
matching is to consider the distribution of all the possible appearances of the object
for the target viewpoint. More exactly, we train NOPE to predict the average of all the
possible appearances of the object. We then treat the predicted average as a template:
Under some simple assumptions, the distance between this template and the query
view is directly related to the probability of the query view to be a sample from the
distribution of the possible appearances of the object. This approach allows us to
deal with the ambiguities of novel view prediction in a robust and efficient way:
Predicting the average views is just a direct inference of NOPE and is thus very fast,
and robust to partial occlusions thank to template-matching.

Furthermore, our approach can identify the pose ambiguities due, for example,
to symmetries [88], even if we do not have access to the object 3D model but only to
a single view. To this end, we estimate the distribution over all poses for the query,
which becomes increasingly less peaked as the pose suffers from increasingly many
ambiguities. Figure 6.1 depicts a variety of ambiguous and unambiguous cases with
their pose distributions.

In summary, our main contribution in this chapter is to show we can efficiently
and reliably recover the relative pose of an unseen object in novel views given only a
single view of that object as reference. To the best of our knowledge, our approach is
the first to predict ambiguities due to symmetries and partial occlusions of unseen
objects from only a single view.

6.1 Novel view synthesis

One very simple way to relax the requirement of the 3D CAD model is using novel
view synthesis methods to generate different viewpoints from reference images. This
relates to the pioneering work of Nerfs [95] since it performs novel-view synthesis.
Recent works [167, 93] have had successes generating novel views via Nerfs using
a sparse set of views as input by leveraging 2D diffusion models. For images, the
breakthrough in diffusion models [49, 124] have unlocked several workflows [117, 121,
120]. For 3D applications, DreamFusion [112] pioneered a score-distillation sampling
that allows for the use of a 2D diffusion model as an image-based loss, leveraged
by 3D applications via differentiable rendering. This has resulted in significant
improvements for tasks previously trained with a CLIP-based image loss [116, 61, 67,
79, 138, 62] or diffusion-based methods [84, 82, 80, 144].

In this chapter, while our main goal is to perform object pose estimation for
novel objects, we will demonstrate how recent advancements in novel view synthesis
methods can be used to relax the requirement of 3D CAD models, enabling pose
estimation from a single reference image.

6.2 Method

In this section, we first introduce our formalism, then describe our architecture and
how we train it, and finally how we use it for pose prediction and for identifying
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pose ambiguities.

6.2.1 Formalization

Given a reference image or a template T of a target object and a query image Q of the
same object, we would like to estimate the probability p(∆R | T ,Q) that the relative
motion between T and Q is a certain discretized relative pose ∆R. We assume that
this probability follows a normal distribution in the embedding space of the images:

p(∆R | T ,Q) = N (q | µ(t,∆R),Σ(t,∆R)) , (6.1)

where q and t are the embeddings for query image Q and reference image T respec-
tively, µ(t,∆R) is the mean of the normal distribution, and Σ(t,∆R) its covariance.
This approach allows us to handle the fact that the object can have various appear-
ances from viewpoint ∆R given the reference image, as discussed in the introduction.

We take the mean µ(t,∆R) as the average embedding for the appearance of the
object from pose ∆R over the possible 3D shapes for the object:

µ(t,∆R) =

∫
M

µ(∆R,M)p(M|t)dM , (6.2)

with M a 3D model of testing object and e(∆R,M) the image embedding of same
object under pose ∆R. µ(t,∆R) may look complicated to compute, but it is in fact
easy to train a deep network to predict it using the L2 loss:∑

(q,t,∆R)

∥F (t,∆R)− q∥22 . (6.3)

F denotes the network, (q, t,∆R) is a training sample where we know the ground-
truth. During training, given enough samples, F (t,∆R) will converge naturally
towards µ(t,∆R).

6.2.2 Framework

Figure 6.3 gives an overview of our approach. We train a deep architecture to predict
the average embeddings of novel views of an object using pairs of images of objects
and the corresponding pose changes from a first set of object categories. In practice,
we consider embeddings computed from the pretrained VAE of [119], as it was
shown to be robust for template matching. To generate these embeddings, we use a
U-Net-like network with a pose conditioning mechanism that is very close to the one
of 3DiM [144].

More precisely, we first use an MLP to convert the desired relative viewpoint ∆R
with respect to the object pose in the reference view to a pose embedding. We then
integrate this pose embedding into the feature map at every stage of our U-Net using
cross-attention, as in [119].

Training. At each iteration, we build a batch composed of N pairs of images, a
reference image and another image of the same object with a known relative pose. The
U-Net model takes as input the embedding of the reference image and as conditioning

80



Figure 6.3: Overview. During training, we train a U-Net to predict the embedding of
a novel view of an object, given a reference image of the object and a relative pose.
The U-Net is conditioned on an embedding of the relative pose computed using an
MLP, which we train jointly with the U-Net. At inference, our method first takes as
input a reference image of a new object and predicts the embeddings of views of the
object under many relative poses. This inference takes around 1 second on a single
GPU V100. Then, given a query image of the object, we first compute its embedding
and match it against the set of predicted embeddings. This gives us a distribution
over the possible relative poses between the reference and query images, where the
maximum corresponds to the predicted pose.

the embedding of the relative pose to predict an embedding for the second image.
We jointly optimize the U-Net and the MLP by minimizing the Euclidean distance
between this predicted embedding and the embedding of the query image. Note that
we freeze the pretrained VAE network of [119] during the training.

By training it on a dataset of diverse objects, this architecture generalizes well to
novel unseen object categories. Interestingly, our method does not explicitly learn any
symmetries during training, but it is able to detect pose ambiguities during testing as
discussed below.

6.2.3 Pose prediction

Template matching. Once our architecture is trained, we can use it to generate the
embeddings for novel views: Given a reference image and a set of N relative view-
points P = (∆R1,∆R2, . . . ,∆RN), we can obtain a corresponding set of predicted
embeddings (t1, t2, . . . , tN). To define these viewpoints, we follow the approach used
in [104]: We start with a regular isosphere and subdivide each triangle recursively
into four smaller triangles twice to get 342 final viewpoints. Finally, we simply
perform a nearest neighbor search to determine the reference point that has the
embedding closest to the embedding of the query image.
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No symmetry 90-symmetry 180-
symmetry

Circular
symmetry

Figure 6.4: Object symmetries and the pose ambiguities they may generate, as
estimated by our method given a pair of reference and query images.

Object categories in the training set
airplane bench cabinet car chair display lamp speaker rifle sofa table telephone vessel

Object categories in the test set
bottle bus clock dishwasher guitar mug pistol skateboard train washer

Figure 6.5: Visualization of training and test sets from the ShapeNet dataset [16].
The shapes and appearances in the training and test sets are very different and thus
constitute a good test bed for generalization to unseen categories.

Detecting pose ambiguities. Pose ambiguities arise when the object has symmetries
or when an object part that could remove the ambiguity is not visible, as for the mug
in Figure 6.1. By considering the distance between the embedding of the query image
and the generated embeddings, we not only can predict a single pose but also identify
all the other poses that are possible given the reference and query views. This can be
done simply by relying on the normal distribution introduced in Equation (6.1):

log p(∆R | T ,Q) ∝ ∥F (t,∆R)− q∥2 . (6.4)

To illustrate this, we show in Figure 6.4 three distinct types of symmetry and
visualize the pose distribution for corresponding pairs of reference and query im-
ages (not shown). The number of regions with high similarity scores is consistent
with the number of symmetries and pose ambiguities: If an object has no symmetry,
the probability distribution has a clear mode. The probability distribution for objects
with symmetries have typically several modes or even a continuous high-probability
region in case of rotational symmetry. We provide additional qualitative results in
Section 6.3.

82



6.3 Experiments

In this section, we first describe our experimental setup in Section 6.3.1. We then
compare our method to others [100, 91, 90, 144, 127, 104] on both synthetic and real-
world datasets in Section 6.3.2. Section 6.3.3 reports an evaluation of the robustness
to partial occlusions. We provide the run-time in Section 6.3.4. Finally, we discuss
failure cases in Section 6.3.5.

6.3.1 Experimental setup

To the best of our knowledge, we are the first method addressing the problem of object
pose estimation from a single image when the object belongs to a category not seen
during training: PIZZA [100] evaluated on the DeepIM refinement benchmark, which
is made of pairs of images with a small relative pose; SSVE [91] and ViewNet [90]
evaluated only on objects from categories seen during training. We therefore had to
create a new benchmark to evaluate our method.

Synthetic dataset. We created a dataset as in FORGE [63] using the same
ShapeNet [16] object categories. For the training set, we randomly select 1000 object
instances from each of the 13 categories as done in FORGE (airplane, bench, cabinet,
car, chair, display, lamp, loudspeaker, rifle, sofa, table, telephone, and vessel), resulting in a
total of 13,000 instances. We build two separate test sets for evaluation. The first test
set is the “novel instances” set, which contains 50 new instances for each training
category. The second test set is the “novel category” set, which includes 100 models
per category for the 10 unseen categories selected by FORGE (bus, guitar, clock, bottle,
train, mug, washer, skateboard, dishwasher, and pistol). For each 3D model, we randomly
select camera poses to produce five reference images and five query images. We use
BlenderProc [26] as rendering engine.

Figure 6.5 illustrates the categories used for training our architecture and the
categories used for testing it. The shapes and appearances of the categories in the
test set are very different from the shapes and appearances of the categories in the
training set, and thus constitute a good test set for generalization to unseen categories.

Real-world dataset. We evaluate on the T-LESS dataset [54] following the evaluation
protocol of [127]: we train only on objects 1-18 and test on the full PrimeSense test set
using the ground-truth masks. At inference, we randomly sample a non-occluded
reference image either from all views or only from front views (-45°≤ azimuth ≤ 45°),
which often offers more information on the object and illustrates the influence of the
reference view.

Metrics. For the ShapeNet dataset, we report two different metrics based on relative
camera pose error as done in [91]. Specifically, we provide the median pose error
across instances for each category in the test set, and the accuracy Acc 30 for which a
prediction is treated as correct when the pose error is ≤ 30◦. Additionally, we present
the results of our method for the top 3 and 5 nearest neighbors retrieved by template
matching.

For the T-LESS dataset, as most objects are symmetric, we report the recall VSD
metric as done in [127]. Please note that for the evaluation on the T-LESS dataset,
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Method novel inst. bottle∗ bus clock dishwasher guitar mug pistol skateboard train washer mean

A
cc

30
↑

ViewNet [90] 77.5 48.4 36.2 23.5 16.4 37.8 31.3 17.9 33.9 44.8 25.1 35.7
SSVE [91] 75.3 61.5 38.2 41.8 21.3 46.8 38.4 36.8 62.3 41.5 50.8 46.8
PIZZA [100] 72.3 76.0 38.6 38.5 32.6 30.8 35.6 40.4 58.3 52.9 61.0 48.8
3DiM [144] 77.3 95.1 43.5 23.6 24.5 36.0 32.0 31.9 50.3 37.0 56.1 46.1
Ours (top 1) 75.5 96.0 53.6 48.0 48.0 49.0 44.6 69.0 57.8 55.2 60.6 59.8

Ours (top 3) 92.0 97.4 83.8 73.4 78.5 66.8 56.0 83.8 86.2 86.0 84.4 80.8
Ours (top 5) 95.5 97.8 89.8 80.4 88.2 74.6 62.8 88.4 92.8 95.4 93.4 87.1

M
ed

ia
n
↓

ViewNet [90] 6.6 26.7 35.8 40.3 96.3 50.6 51.6 42.8 37.4 26.8 44.3 41.7
SSVE [91] 6.1 23.8 45.2 41.9 90.4 47.6 49.6 24.0 13.5 24.9 48.1 37.7
PIZZA [100] 5.8 25.5 26.4 43.2 80.6 40.2 45.5 23.4 17.3 20.3 38.5 33.3
3DiM [144] 5.7 1.8 19.8 47.3 98.8 35.2 35.7 21.2 12.5 17.6 19.2 28.6
Ours (top 1) 8.1 1.8 18.4 39.9 77.6 31.6 35.5 13.4 15.5 18.3 8.5 24.4

Ours (top 3) 5.0 1.3 5.8 9.1 4.8 16.0 22.6 8.1 6.5 6.7 5.7 8.3
Ours (top 5) 4.5 1.2 4.5 7.1 4.4 11.6 18.4 6.1 5.6 4.9 5.0 6.6

Table 6.1: Quantitative results on ShapeNet. *We treat “bottle" as a symmetric
category, i.e., the error is only the difference of elevation angle. Since the quality of
prediction may depend on the reference image, we report the score as the average
over 5 runs with 5 different reference images.

we also predict the translation by using the same formula “projective distance esti-
mation” as SSD-6D [65], as done in [128, 127]. This translation is deduced from the
retrieved template and the relative scale factor between the two input images as done
in [104].

Baselines. We compare our work with all previous methods that aim to predict
a pose from a single view: PIZZA [100], a regression-based approach that directly
predicts the relative pose, as well as SSVE [91] and ViewNet [90], which employ
semi-supervised and self-supervised techniques to treat viewpoint estimation as
an image reconstruction problem using conditional generation. We also compare
our method with the recent diffusion-based method 3DiM [144], which generates
pixel-level view synthesis. Since 3DiM originally only targets view-synthesis and
is not designed for 3D object pose, we use it to generate templates and perform
nearest neighbor search to estimate a 3D object pose. To make 3DiM work in the
same setting as us, we retrain it using relative pose conditioning instead of canonical
pose conditioning.

Implementation. Only the code of PIZZA is available. The other methods did not
release their code at the time of writing, however we re-implemented them. We use a
ResNet18 backbone as in [100] for PIZZA, SSVE, and ViewNet. We train all models
on input images with a resolution of 256×256 except for 3DiM for which we use a
resolution of 128×128 since 3DiM performs view synthesis in pixel space, which
takes much more memory. Our re-implementations achieve similar performance as
the original papers when evaluated on the same data for seen categories, as shown
in Table 6.1, which validates our comparisons. Our method also uses the frozen
encoder from [119] to encode the input images into embeddings of size 32×32×8. In
all settings, we train the baselines and our method using the same training set and
AdamW [85] with an initial learning rate of 5× 10−5. Training takes about 20 hours
on 4 V100 GPUs for each method.
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Method
Ref. image
sampling

Recall VSD

Seen object Novel object Avg

G
T

C
A

D Nguyen et al. [104] - 60.15 58.70 59.57
MultiPath [127] - 43.17 43.33 43.24

1
re

f.
im

ag
e

(a
vg

5
ru

ns
) PIZZA [100] all views 20.05 15.90 18.39

Ours all views 47.03 45.69 46.49

PIZZA [100] front views 21.63 15.55 19.19
Ours front views 49.30 48.46 48.96

Table 6.2: Comparison to PIZZA [100] and CAD-based methods [104, 127] on seen
(obj. 1-18) and novel (obj. 19-30) objects of T-LESS. We report numbers averaged over
5 different samplings and runs.

Seen objects: #4, #14 Novel objects: #20, #22

Reference Query Prediction Reference Query Prediction

Figure 6.6: Qualitative results on real images of T-LESS. For each sample, we show
in the last column the predicted poses.

6.3.2 Comparison with the state of the art

Results on ShapeNet. Table 6.1 summarizes the results of our method compared
with the baselines discussed above. Under both the Acc30 and Median metrics,
our method consistently achieves the best overall performance, outperforming the
baselines by more than 10% in Acc30 and 10o in Median. In particular, while other
works produce reasonable results on unseen instances of seen training categories,
they often struggle to estimate the 3D pose of objects from unseen categories. By
contrast, our method works well in this case, demonstrating a better generalization
ability on unseen categories.

Figure 6.7 shows some visualization results of our method on unseen categories,
with and without symmetries. Our method produces more accurate 3D poses than
the baselines when there is a symmetry axis.

Results on T-LESS. Table 6.2 shows our comparison with [100, 127, 104] on real
images of T-LESS. While our method focuses on the more challenging case of using
a single reference image, [104, 127] rely on ground-truth CAD models. Our method
consistently outperforms the baseline PIZZA by a large margin. Interestingly, al-
though there is still a gap compared to the SOTA [104], our method outperforms
MultiPath [127]. Figure 6.6 shows results on seen and unseen objects of T-LESS.
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with partial occlusions

Reference Query PIZZA [100] Ours Pose
distribution Reference Query PIZZA [100] Ours Pose

distribution

Figure 6.7: Visual results on unseen categories from ShapeNet. An arrow indicates
the pose with the highest probability as recovered by our method. We visually
compare with PIZZA, which is the method with the second best performance. We
visualize the predicted poses by rendering the object from these poses, but the
3D model is only used for visualization purposes, not as input to our method.
Similarly, we use the canonical pose of the 3D model to visualize this distribution,
but not as input to our method.
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A
cc

30
↑ Method 0% 5% 10% 15% 20% 25%

PIZZA [100] 48.9 44.6 33.3 24.5 18.2 14.6
NOPE (ours) 59.8 54.3 48.4 45.1 43.7 40.5

Table 6.3: Robustness to partial occlusions. We add rectangles of Gaussian noise to
the query image, and vary the ratio between the area of the rectangle and the area of
the object’s 2D bounding box. Our method remains robust under large occlusions,
while PIZZA’s performance decreases significantly.

Method Memory Run-time
Processing Neighbors search

3DiM [144] 358.6 MB 13 min 0.31 s
NOPE (ours) 22.4 MB 1.01 s 0.18 s

Table 6.4: Average run-time of our method and 3DiM [144] on a single GPU V100.
We report the memory used for storing novel views, the time taken to generate novel
views, and the time taken for nearest neighbor search to obtain the final prediction.

Dishwasher Clock Mug Guitar

Figure 6.8: Failure cases. “Dishwasher”, “clock”, and “dishwasher” are “nearly
symmetrical” while “guitar” are barely visible from some viewpoints. This makes
the pose estimation very challenging, and all the methods perform poorly on these
categories.

6.3.3 Robustness to occlusions

To evaluate the robustness of our method against occlusions, we added random
rectangle filled with Gaussian noise to the query images over the objects, in a similar
way to Random Erasing [163]. We vary the size of the rectangles to cover a range
betwen 0% to 25% of the bounding box of the object. Figures 6.1 and 6.7 show several
examples.

6.3.4 Runtime analysis

We report the running time of NOPE and 3DiM in Table 6.4. Our method is signifi-
cantly faster than 3DiM, thanks to our strategy of predicting the embedding of novel
viewpoints with a single step instead of multiple diffusion steps.

6.3.5 Failure cases

All the methods fail to yield accurate results when evaluated on “clock”, “dish-
washer”, “guitar”, and “mug” categories, as indicated by the high median errors.
As shown in Figure 6.8, these categories except “guitar” are “almost symmetric”, in
the sense that only small details make the pose non-ambiguous. Our predictions
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using the top-3 and top-5 nearest neighbors significantly improves median errors
for 90-symmetrical, 180-symmetrical objects, but not circular-symmetrical as mug
objects. Additionally, guitar objects can appear very thin under certain viewpoints.

6.4 Conclusion

Our experiments in this chapter have shown that direct inference of average view
embeddings from a single view, as in NOPE, leads to accurate object pose estimation.
This is true even for objects from unseen categories, while requiring neither retraining
nor a 3D model. NOPE also lets us estimate the pose ambiguities that arise for many
objects.
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Chapter 7

Conclusion

7.1 Contributions

We presented methods for detecting, segmenting, and estimating the 6D pose of
novel objects without requiring retraining. We focused on practical scenarios where
the test objects are unknown, and only the 3D model or a single reference image is
available for inference. Our proposed methods demonstrated comparable or superior
performance to existing approaches, despite requiring less input data, and even
achieved state-of-the-art results on standard benchmarks.

More precisely, we introduced CNOS in Chapter 3, which detects and segments
novel objects from only their 3D models. CNOS outperformed supervised meth-
ods such as Mask R-CNN [44] and was recognized as the top-performing method
for detecting and segmenting unseen objects in the BOP Challenge 2023 [51]. In
Chapter 4, we revisited the limitations of traditional template matching for 6D pose
estimation and proposed novel methods using local features, which demonstrated
strong generalization. Chapter 5 extended this work with GigaPose, a faster and
more robust approach to overcome limitations in similar settings. In Chapter 6, we
presented NOPE, which leverages novel-view synthesis to estimate the pose of novel
objects from a single image.

We also demonstrated in all of our proposed methods that “templates”, which are
2D views of target 3D objects, is a very useful concept for pose estimation of novel
objects. Templates not only allow natural generalization to novel objects by extending
the set of templates but also facilitate robustness to domain gaps, lack of textures, and
clutter and partial occlusions using discriminative features learnt with contrastive
learning.

7.2 Future work

In this section, we discuss several paths for future research building upon our contri-
butions.

7.2.1 Model-free novel object pose estimation

While we presented promising results for pose estimation from a single image settings
in Chapter 5 and in Chapter 6, we found that there is still a significant gap in the
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results compared to those obtained using ground-truth CAD models.
To address the gap, we can use additional templates created from reference

video(s) as in model-free settings introduced in BOP Challenge 20241. Specifically, in
“static” reference video settings where object poses of templates are provided, we
can seamlessly use our method. On the other hand, in “dynamic” reference videos
settings where object poses of templates are not provided, we can first use methods
such as BundleSDF [146] or Hampali et al. [41] to obtain the poses, and then further
apply our method to estimate object poses. Relaxing the requirement of CAD models
will enable more practical applications in real-world scenarios.

7.2.2 Articulated object pose estimation

This thesis focuses on rigid objects, but it is important to consider non-rigid objects
commonly found in everyday settings, such as tools, furniture, and heavy equipment.
Addressing the poses of articulated objects is therefore crucial in many applications,
particularly in robotics. However, articulated objects possess additional degrees
of freedom that complicate pose estimation compared to rigid objects due to their
complex motion and articulation constraints. One strong baseline for this problem is
to first estimate the pose of each object part independently using rigid object pose
estimation methods such as the ones proposed in this thesis, and then refine them
with articulated constraints.

1https://bop.felk.cvut.cz/challenges/bop-challenge-2024/
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